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Abstract

Using administrative data from Germany, we document that high-wage locations have substantially
lower labor shares and higher wage dispersion. We show that a parsimonious model, in which firm
monopsony power stems from search frictions in local labor markets, can explain these facts as long
as “superstar” firms sort into productive locations. This positive sorting, which emerges as the unique
equilibrium if firm and location productivity are sufficient complements or labor market frictions are
sufficiently large, steepens the local wage ladder in productive locations and leads to not only higher
wages, but also greater wage inequality. At the same time, positive firm sorting reduces local labor
shares in prosperous places because more productive firms have more monopsony power. Our estimated
model indicates that firm sorting can rationalize the lower local labor shares in regions with endogenously
higher wages and can account for 40% of their increased wage dispersion. In spatial firm sorting, we thus
highlight a new source of disparities in local labor market outcomes.
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1 Introduction

It is well known that local labor markets vary significantly in terms of income per capita and

average wages. What is much less recognized, however, is that this is also true for monopsony

power and wage dispersion. Even more surprisingly, these variations follow a systematic pattern.

Take Germany as an example: Average wages are negatively correlated with local labor shares,

but positively with local wage dispersion. In particular, local labor shares are 6 percent lower in

the most prosperous regions, whereas local wage dispersion is 20 percent higher.

The main contribution of this paper is to highlight these novel facts and propose a unifying

theory that explains why high-wage locations feature both stronger monopsony power and greater

wage inequality based on spatial firm sorting. We develop a parsimonious model of differentiated

local labor markets, where in each location heterogeneous firms hire unemployed and employed

workers in the presence of search frictions. Because of search frictions, firms have monopsony

power: They internalize that they hire more workers if they post higher wages. This leads to a

local wage ladder with more productive firms paying more. Different wage policies across firms

with local labor market power also imply that firms differentially markdown wages relative to

their marginal product and, as a result, have different labor shares. Importantly, the extent of

local labor market power and the shape of the local wage ladder directly depend on the local

distribution of firm productivity, and therefore on how firms sort into local labor markets.

To understand why firm sorting leads to lower labor shares and more wage inequality in

high-wage locations, suppose that more productive, “superstar” firms settle in more productive

labor markets. This concentration of productive firms enhances competition for workers, which

steepens the wage ladder in those regions. This not only increases the local average wage but,

notably, local wage dispersion by driving a wedge between the earnings of those who successfully

climb the ladder and those who do not. Perhaps surprisingly in light of this enhanced poaching

competition, the same spatial differences in firm composition lead to lower local labor shares in

prosperous places: Because productive firms have more monopsony power and lower labor shares,

their abundance implies a lower average local labor share. Through the lens of our estimated

model, firm sorting explains the lower local labor shares in high-wage locations and accounts for

40% of their increased wage dispersion.

Our model rests on two central ingredients. First, to assess whether highly productive firms

indeed prefer to locate in productive regions, we need a model in which firm location choices are

endogenous. Second, for the local firm composition to shape labor market competition and—

through this channel—local wage distributions, a model with on-the-job search is called for: It gives
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rise to local wage ladders that are endogenously determined by the firm types that settle there.

In this setting, we show that firms face a basic trade-off when making their location choice.

On the one hand, firms “like” productive locations with high TFP. These are locations with good

fundamentals, which we interpret broadly; for instance, they can stem from modern infrastruc-

ture, productive spillovers, existing input-output networks, and, importantly, workers’ human

capital. On the other hand, firms are hesitant to sort into such locations if many highly produc-

tive firms also choose to locate there: The presence of other productive firms pushes the firm

into a low position on the local wage ladder, which makes it difficult to poach and retain workers

and thereby limits firm size. Hence, firms’ location decisions balance two considerations: local

productivity and local competitiveness. To our knowledge, this is the first model that integrates

on-the-job search with firms’ location choices and highlights this novel trade-off.1

We derive sufficient conditions for monotone firm sorting across space. Sorting is positive—i.e.,

better firms locate in more productive locations—if firm and location productivity are sufficiently

complementary in production or if local labor market frictions are sufficiently large. Productive

complementarities ensure that highly productive firms have greater willingness to pay for land in

more productive places. In turn, sufficiently large labor market frictions ensure that the compe-

tition motive is of limited importance and does not outweigh this productivity consideration. We

also show that under the conditions for monotone sorting, an equilibrium exists and is unique.

Our theory makes precise predictions on why firm sorting affects local labor market power

and local wage distributions. Positive firm sorting across space results in a stochastically better

firm composition in more productive locations. As a result, competition for poaching workers

increases in those areas, which leads to steeper wage ladders and, in turn, higher average wages

and greater wage inequality. At the same time, despite intensified competition among top firms,

more productive locations exhibit a lower average local labor share. This is because positive

firm sorting leads to an abundance of “superstar” firms, which, under mild conditions, have a

high degree of monopsony power and low firm-level labor shares. We show that systematic firm

sorting is not only sufficient but also necessary to generate spatial variation in local labor shares

and within-location wage inequality, and we exploit this result to infer firm sorting from data.

Using administrative data from Germany, we show that these predictions are in line with the

evidence: The top quartile of local labor markets in terms of their GDP per capita not only have

higher average wages, but also 20% higher wage dispersion and 6% lower labor shares compared

with the bottom quartile. Through the lens of our model, these patterns allow us to infer that
1Firms often hire from other firms within their local labor market; e.g., in Germany, this accounts for 50% of firms’ hires.
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firms sort systematically across space. To complement these findings, we provide direct evidence

for our model’s mechanism that links firm sorting to spatial wage variation: Wage growth from an

employment-to-employment (EE) transition is roughly twice as large in the richest compared with

the poorest locations, which indicates that wage ladders are indeed steeper in prosperous places.

Even though we do not explicitly model spatial worker sorting, we recognize the importance

of worker heterogeneity for spatial wage gaps. In our theory, we capture the spatial variation in

worker attributes through local TFP differences, which firms take into account when choosing

their location. Under common functional form assumptions, however, local TFP does not impact

several of our key outcomes that are shaped by firm sorting: the steepness of local wage ladders,

local EE returns, within-location wage dispersion, and local labor shares are all independent of

local TFP and determined by the productivity distribution of local producers. The documented

spatial variation in these outcomes is therefore indicative of firm sorting. In practice, we nev-

ertheless control for observed and unobserved worker heterogeneity and show that there is still

spatial variation in our outcomes of interest, which we argue firm sorting can help explain.

To gauge the quantitative importance of firm sorting for spatial disparities, we estimate our

model using administrative data from Germany. A central aspect of our empirical strategy is to

separately identify firm sorting from the fundamental productivity of a location. We prove that we

can achieve identification from data on local labor shares and value added. First, because, in our

model, local labor shares are entirely determined by the productivity distribution of local firms,

the spatial variation in labor shares identifies the extent of firm sorting. Our finding that local

labor shares are lower in locations with high GDP per capita thus calls for positive sorting between

firms and locations. Second, the spatial variation in local value added per worker that is not due

to differences in firm composition pins down the fundamental productivity of each location.

We pursue two objectives with our estimated model. First, to quantify the equilibrium impact

of firm sorting, we run a counterfactual that matches firms randomly to locations. Since firm

sorting is the sole driver of spatial differences in local labor shares in our model, local labor market

power would be equalized in the absence of it. In addition, comparing the poorest and richest

regions, positive firm sorting accounts for at least 40% of the spatial gap in within-location wage

dispersion and for at least 15% of the gap in average wages. We conclude that firm sorting is a

major driver of spatial inequalities, especially in relation to wage dispersion and labor shares.

Second, we conduct several experiments to illustrate the importance of our two central model

ingredients: on-the-job search and endogenous spatial firm sorting. We first show that the

presence of on-the-job search is crucial for how firm sorting shapes spatial wage disparities:
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Reestimating our model for lower levels of employed workers’ search efficiency shows that when the

poaching rate decreases by 10%, spatial firm sorting contributes 18% less to across-location wage

inequality and 8% less to the spatial gap in within-location inequality. This highlights that the

interaction between firm sorting and on-the-job search is crucial for understanding spatial wage

differences. To illustrate the importance of endogenous firm sorting (as opposed to exogenous

spatial differences in firm productivity), we conduct a stylized policy exercise that reduces place-

based subsidies for a set of low-income regions in Germany. This policy leads to the resorting of

firms across locations with significant effects on the spatial distribution of wages and labor shares.

Related Literature Our framework of frictional local labor markets with on-the-job search is

a spatial version of the workhorse job-ladder model of Burdett and Mortensen (1998). The recog-

nition that search frictions, and particularly on-the-job search, are crucial drivers of wage inequal-

ity and enable firm heterogeneity to influence wages is a key insight from the literature on labor

search and frictional wage dispersion (e.g., Diamond, 1971; Bontemps et al., 2000; Postel-Vinay

and Robin, 2002; Karahan et al., 2017, Bagger and Lentz, 2019). Two important findings are that

firm heterogeneity accounts for a sizable share of cross-sectional wage dispersion (∼15%-30%) and

that search frictions and on-the-job search do as well (∼10%-40%).2 Despite this evidence on the

importance of firms and search for cross-sectional inequality, there has been no attempt to link

spatial inequality to the sorting of firms into local labor markets that feature on-the-job search.

Our paper is the first to conduct such an analysis, both theoretically and quantitatively.

Because search frictions grant firms labor market power, these theories naturally lend them-

selves to the analysis of local monopsony power.3 Much recent work seeks to measure firms’ labor

market power (Manning, 2011; Langella and Manning, 2021; Yeh et al., 2022) and studies the

implications for wages, allocative efficiency, and the aggregate labor share (Berger et al., 2022a;

Jarosch et al., 2024) as well as for the efficacy of policies such as the minimum wage (Berger

et al., 2022b). We add to this literature by showing that monopsony power varies systematically

across local labor markets and that spatial sorting by firms can account for it. We thus link firm

composition to labor shares at the local labor-market level and, by adding this spatial dimension,

complement studies that made this connection at the economy-wide level over time; see Autor

et al. (2020) and Gouin-Bonenfant (2022).

By focusing on spatial disparities, we relate to the urban literature on the sources of spatial

wage gaps. This literature has almost exclusively focused on wage-level differences across regions,
2These estimates come from structural models (e.g., Postel-Vinay and Robin (2002) and Bagger and Lentz (2019)) as well

as from non-structural wage regressions that include firm fixed effects (e.g., Card et al. (2013)).
3Search frictions have been found to be the main source of imperfect competition in labor markets (Berger et al., 2023).

4



and especially the city wage premium.4 Schmutz and Sidibé (2018), Heise and Porzio (2022), and

Martellini (2022) analyze spatial wage gaps using a job ladder model and focus on worker sorting

as a main source of inequality. By contrast, our work highlights how the spatial sorting of firms

drives local wage dispersion—by endogenously shaping local wage ladders—and local labor shares.

Only a few urban papers analyze firms’ location choices but differ from ours in focus and mod-

eling choices. Gaubert (2018) builds a frictionless model of spatial firm sorting to analyze the

efficiency of place-based policies. Bilal (2022) is the first to analyze the effect of firms’ location

choices in a model that features labor market frictions. Given his focus on spatial unemployment

differences, however, he abstracts from on-the-job search and thus from how firm sorting affects

local wage inequality and labor market power by shaping local wage ladders.

Our project thus merges three strands of the literature that have largely existed in isolation:

the literature on frictional labor markets and cross-sectional wage dispersion, the literature on

monopsonistic firms and labor market power, and the urban literature on spatial inequality.

2 The Model

2.1 Environment

Time is continuous, the horizon infinite and the economy is in steady state. There is a continuum

of locations (i.e., local labor markets) and a continuum of firms and workers.

Locations are indexed by ℓ and differ in exogenous productivity A(ℓ). We assume that A(ℓ)

is strictly positive for all ℓ and continuously differentiable, and that locations are ordered by

productivity, i.e., ∂A(ℓ)/∂ℓ > 0. Each location has an exogenous amount of land, distributed

with the continuously differentiable cdf R on [ℓ, ℓ]; r > 0 is the corresponding density.

In each location ℓ, there is a unit mass of risk-neutral homogeneous workers who are spatially

immobile, something we relax in our estimation below. Unemployed workers in ℓ receive flow util-

ity b(ℓ) and search for jobs, while employed workers receive a wage and do on-the-job search (OJS).

Importantly, while we do not explicitly model worker heterogeneity across space, it is implicitly

contained in local productivity A(ℓ)—something we confirm in our estimated model—and thus

contributes to a location’s attractiveness. In this sense, more productive workers increase firms’

average output and thus impact spatial firm sorting.

Firms are risk-neutral and differ in productivity p. We assume p ∈ [p, p̄], distributed with a

continuously differentiable cdf Q, with density q > 0. We call p the ex ante productivity of firms,
4See, e.g., Glaeser and Maré (2001), Duranton and Puga (2004), Gould (2007), Baum-Snow and Pavan (2011), Moretti

(2011), or Behrens et al. (2014) for the case of the U.S.; De La Roca and Puga (2017) for Spain; Combes et al. (2008) for
France; and Bamford (2021) or Dauth et al. (2022) for Germany.
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based on which location choices are made. After settling in location ℓ, each firm with attribute

p draws ex post productivity y ∈ [y, y] from cdf Γ(·|p), where Γ is continuously differentiable in

both y and p. We assume that the corresponding density, γ(·|p), satisfies the strict monotone

likelihood ratio property in (y, p). This implies that ∂Γ(y|p)/∂p < 0 for all y ∈ (y, y), i.e.,

more productive firms ex ante draw their ex post productivity from better distributions in the

first-order stochastic dominance (FOSD) sense. We distinguish between ex ante and ex post

productivity so that, even with pure sorting between ex ante firm types and locations, we obtain

a non-degenerate distribution of firm productivity in each location.5

In order to produce in location ℓ, firms need to buy one unit of land at price k(ℓ) and post a

wage to hire local workers. The returns to land accrue to a set of local landowners who operate

in the background. Firms have no capacity constraint when employing workers, so they hire

any worker who yields a positive profit. Firm y in location ℓ produces output z(y,A(ℓ)) per

worker hired. We assume that z is twice continuously differentiable and strictly increasing in

each argument. Note that while the ex ante productivity of firms p determines the distribution of

ex post productivity y, p is irrelevant for production conditional on y. Hence, after entry, firms

are fully characterized by their y. We assume that z is the output of the same homogeneous good

in all locations, whose price is normalized to one. All agents discount the future at rate ρ.

In each location there is a frictional labor market, in which workers and firms face search

frictions and search is random. In the baseline model, we assume that meeting rates are exogenous

and constant across locations. Firms meet workers at Poisson rate λF . Employed workers’

meeting rate is given by λE and unemployed workers’ meeting rate by λU . Matches are destroyed

at rate δ. We also denote the meeting rates of employed workers, unemployed workers, and

firms relative to the job destruction rate by φE ≡ λE/δ, φU ≡ λU/δ and φF ≡ λF /δ. In our

quantitative analysis we endogenize local population size and hence these meeting rates through

endogenous labor mobility, which allows them to vary across space.

In terms of wage setting, we assume that firms post wages with commitment as in Burdett

and Mortensen (1998). We denote the flow wage paid by firm y in location ℓ by w(y, ℓ). Hence,

firm y in location ℓ receives flow profit π(y, ℓ) = z(y,A(ℓ))− w(y, ℓ) when employing a worker.

The model timing is such that firms first make a one-time location choice and then the

continuous-time economy described above plays out in each local labor market.

To simplify our analytical arguments, we impose the following assumption.

5Alternatively, we could have obtained non-degenerate firm distributions in all ℓ by having firms with different p draw
preference shocks over locations or by letting the matching process between p and ℓ be subject to search frictions.
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Assumption 1.

1. The distributions of ex post productivity Γ(y|p) have a common support: ∀p, y ∈ [y, y].

2. In each location ℓ, firms with the lowest ex post productivity, y, make zero profits.

An implication of the common support assumption from part 1, which is supported by the

evidence,6 is that locations inhabited by firms with higher ex ante productivity p have an ex post

productivity distribution Γ(y|p) that puts more mass on highly productive firms. In particular,

it captures the intuition that locations with high-p firms have a relative abundance of “superstar”

firms, whose productivity y is high relative to firms at the bottom of the productivity distribution.

In turn, part 2 will be guaranteed by making sure that the output of firm y equals the reservation

wage, i.e., wR(ℓ) = z(y,A(ℓ)) for all ℓ. One way to ensure this property is by appropriately

choosing non-employment utility b(ℓ) (a primitive) across locations. While Assumption 1 gives us

analytical tractability, we show that our quantitative results are robust to dropping it (Section 8).

2.2 Equilibrium

We now discuss agents’ decisions—namely, the job acceptance decisions of workers as well as firms’

location choices and wage-posting decisions. Finally, we specify the steady-state flow balance and

market-clearing conditions.

Workers. Workers face a single decision: whether to accept a job offer, both when employed

and unemployed. We discuss this job acceptance decision briefly since it is standard.

Consider first a worker who is employed at wage w. The value of being employed at wage w

in location ℓ, V E(w, ℓ), solves the recursive equation

ρV E(w, ℓ) = w+ δ(V U (ℓ)− V E(w, ℓ)) + λE

[∫ w(ℓ)

w(ℓ)
max{V E(t, ℓ), V E(w, ℓ)}dFℓ(t)− V E(w, ℓ)

]
,

where Fℓ is the endogenous wage-offer distribution in location ℓ with support [w(ℓ), w(ℓ)] and

V U (ℓ) denotes the value of unemployment, given by

ρV U (ℓ) = b(ℓ) + λU

[∫ w(ℓ)

w(ℓ)
max{V E(t, ℓ), V U (ℓ)}dFℓ(t)− V U (ℓ)

]
. (1)

Note that, as is well known (and straightforward to show), V E(·, ℓ) is increasing in w, so the

optimal strategy of employed workers is to accept any wage higher than the current one.

In turn, the optimal strategy of unemployed workers is a reservation wage strategy, pinning

down wR(ℓ) for each ℓ from a worker who is indifferent between accepting and rejecting a job,
6Using French data, Combes et al. (2012) find that firm productivity distributions across space do not vary in their left

truncation, which indicates that the productivity of the least productive firms is similar across locations.
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V E(wR(ℓ), ℓ) = V U (ℓ). (2)

Firms. Firms face two decisions. First, they choose location ℓ to maximize expected discounted

profits, taking competition from other firms and land prices as given. Second, conditional on the

location choice, firms post a wage to maximize profits. We solve backward.

Wage Posting. When posting a wage w, a firm in location ℓ trades off profit per worker against

firm size, which is given by (see Appendix SA.1.2)

l(w, ℓ) :=
φF

(1 + φE (1− Fℓ(w)))
2 . (3)

Firms with higher rank in the local wage distribution Fℓ are larger since they poach more and

are being poached less. Conversely, holding the firm’s wage w fixed, its size is smaller if the local

wage distribution, Fℓ, is stochastically better in a FOSD sense, since the firm faces fiercer compe-

tition. Importantly, the (relative) EE rate, φE , governs how strongly firm size depends on local

competition. If labor market frictions are severe and EE flows are rare, φE → 0, the competition

channel is mitigated and, in the limit, firm size is independent of the local wage distribution.

Each firm posts the wage that maximizes its net present discounted value of profits, which

can be expressed as per-worker profit times size (see Appendix SA.1.1),7

J̃(y, ℓ) = max
w≥wR(ℓ)

l(w, ℓ)(z(y,A(ℓ))− w), (4)

whereby a higher wage increases firm size, l(w, ℓ), but reduces flow profits, z(y,A(ℓ))− w.

Equation (4) highlights the fact that location matters to firms in two distinct ways, which

already hints at their trade-off between local productivity and competition. On the one hand,

choosing a high ℓ increases location TFP A(ℓ) and thus output and flow profits. On the other

hand, if many productive firms sort into high-ℓ locations, competition is fierce (the wage offer

distribution Fℓ is stochastically better), and the size of any given firm y becomes compressed.

The firm’s objective function (4) is strictly supermodular in (w, y), which—in combination

with a continuum of productivity levels—implies that w is strictly increasing in y. Therefore,

the local distribution of wage offers coincides with the local distribution of firm productivity,

Fℓ(w(y, ℓ)) = Γℓ(y), where Γℓ is the endogenous productivity cdf of firms in location ℓ. Cdf Γℓ

encapsulates the spatial sorting of firms and is thus the crucial object in our model. In what

follows, we will use Γℓ instead of Fℓ and denote firm size by l(y, ℓ) := l(w(y), ℓ).

Making this substitution, we solve the firm’s problem to obtain the well-known wage function

under wage posting (Burdett and Mortensen, 1998), see Appendix SA.1.3,
7To simplify exposition, we set ρ → 0 for the remainder of the analysis.
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w(y, ℓ) = z(y,A(ℓ))−

∫ y

y

∂z(t, A(ℓ))

∂y

l(t, ℓ)

l(y, ℓ)
dt, (5)

except that in our setting there is one such wage function in each location ℓ; and that ℓ matters

through both its effect on TFP A(ℓ) and firm size l(y, ℓ). Note that firms have monopsony

power due to search frictions. This creates a wedge between the firm’s wage w(y, ℓ) and its

marginal product z(y, ℓ), which depends on the local labor market competition “from below”:

If the competitive pressure surrounding firm t < y relative to firm y is strong—captured by a

small size of t, l(t, ℓ), relative to that of firm y, l(y, ℓ)—then it is difficult for firm y to poach

workers which bids up its wage. Local labor market competition—and hence monopsony power—

is shaped by the local productivity distribution, Γℓ, which affects firm y’s size relative to its lower

ranked competitors (see (3)) and thereby wages. Pinning down Γℓ is what we will turn to next.

Location Choice. Given the wage function for each location ℓ, we can now specify the firm’s

location choice problem. Each firm p considers the expected value from settling in location ℓ,

which is the expected present discounted value of profits net of the price of land, k(ℓ):

J(p, ℓ) =

∫ y

y
J̃(y, ℓ)dΓ(y|p)− k(ℓ) =

∫ y

y

∂z(y,A(ℓ))

∂y
l(y, ℓ) (1− Γ(y|p))dy − k(ℓ),

which we derived using J̃(y, ℓ) from (4) and wage function (5) (and integration by parts).

When choosing their location, firms balance local productivity A(ℓ) (which determines output

z(y,A(ℓ))); local competition Γℓ (which determines their size l(y, ℓ)); and land prices k(ℓ). For-

mally, for each firm of any type p the location choice problem is

max
ℓ
J(p, ℓ). (6)

The solution to (6) describes firms’ location decisions and is at the center of our analysis. The

FOC of this problem highlights firms’ fundamental location choice trade-off:8∫
y

y

(
∂ ln

(∂z(y,A(ℓ))
∂y

)
∂ℓ

+
∂ ln l(y, ℓ)

∂ℓ

)
∂z(y,A(ℓ))

∂y
l(y, ℓ) (1− Γ(y|p)) dy =

∂k(ℓ)

∂ℓ
, (7)

where ∂ ln l(y,ℓ)
∂ℓ is the (semi-)elasticity of firm size wrt location ℓ and

∂ ln
(
∂z(y,A(ℓ))/∂y

)
∂ℓ is the

(semi-)elasticity of the firm’s marginal product wrt ℓ.

FOC (7) reflects firms’ trade-off between profitability and firm size when choosing the opti-

mal ℓ. Locations with higher ℓ, by virtue of having higher productivity A(ℓ), push up output z and

thus firm profits per employee (first term in brackets on the LHS). But if these locations attract
8We proceed as if Γℓ (and thus l(y, ℓ)) is continuously differentiable in ℓ, which will be the case under pure sorting below.
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many productive firms, competition in high-ℓ locations is fierce; poaching and retaining workers is

then difficult, which reduces firm size l (second term in brackets). At the optimal location choice,

this marginal (net) benefit of choosing a higher ℓ equals its marginal cost, which is the increase in

land price. If high-ℓ locations are more desirable, they command higher land prices, ∂k(ℓ)/∂ℓ > 0.

This FOC—along with land market clearing—pins down the equilibrium allocation of firms

to locations, captured by Γℓ. That is, for all ℓ,

Γℓ(y) =

∫ p

p
Γ(y|p)mp(p|ℓ)dp ∀y ∈ [y, y], (8)

where we define by m(ℓ, p) the endogenous joint matching density between (ℓ, p) with conditional

density mp(p|ℓ) (and also mℓ(ℓ|p)).9 In addition, the FOC pins down the land price schedule,

k(·), that sustains this allocation. This is obtained by solving (7) for k, when evaluated at

the equilibrium assignment (see Appendix SA.1.4).10

Land Market Clearing. The land market clearing condition is given by

R(ℓ) =

∫ ℓ

ℓ

∫ p

p
mℓ(ℓ̃|p̃)q(p̃)dp̃dℓ̃. (9)

It ensures that the mass of land with quality below ℓ equals the mass of firms settling in those

places. Thus, the mapping between the distributions of firms Q and land R is measure-preserving.

Good Market Clearing. In each location ℓ, workers, firms and land owners consume their

entire income. Total income thus equals total consumption, which in turn equals total output,

so that the good market clears in each ℓ (where we cancel a multiplicative r(ℓ) on both sides),∫ y

y
z(y,A(ℓ))l(y, ℓ)dΓℓ(y) =

∫ y

y
w(y, ℓ)l(y, ℓ)dΓℓ(y) + J̄(µ(ℓ), ℓ) + k(ℓ). (10)

Flow-Balance Conditions. We have two flow-balance conditions in steady state, which pin

down the equilibrium unemployment rate and the distribution of employment in each location.

First, the inflow into and outflow out of unemployment must balance, which pins down the

unemployment rate, u(ℓ) (which in our baseline model does not vary across ℓ):

δ(1− u(ℓ)) = u(ℓ)λU ⇒ u(ℓ) =
1

1 + φU
. (11)

Second, the inflow into and outflow out of employment in firms with productivity below y must

balance (for all y), taking into account the optimal job acceptance decisions of employed workers.
9Under a measure-preserving matching between firms p and locations ℓ, the marginal densities of m are given by r and q.

10In this competitive land market, firms that maximize expected profits and landowners who maximize land prices will result
in the same allocation of firms to locations, which is why we detail only one side’s decision: the one by firms.
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This determines the cdf of employment in location ℓ, denoted by Gℓ:

u(ℓ)λUΓℓ(y) = (δ + λE(1− Γℓ(y)))Gℓ(y)(1− u(ℓ)) ⇒ Gℓ(y) =
Γℓ(y)

1 + φE(1− Γℓ(y))
. (12)

Note that the outflow of workers from firms with productivity below y, Gℓ(y)(1 − u(ℓ)), has

two sources: exogenous job destruction (driven by δ) and endogenous on-the-job search, which

induces workers to quit for better jobs when they find them (which happens at rate λE(1−Γℓ(y))).

Local employment distribution Gℓ reflects the local firm productivity distribution, Γℓ, but is

stochastically better as long as there is an active wage ladder, φE > 0.

Steady-State Equilibrium. We can now define a steady-state equilibrium.

Definition 1. A steady-state equilibrium is a tuple (w(·, ℓ), k(ℓ),m(ℓ, p),Γℓ(·), l(·, ℓ), Gℓ(·), u(ℓ), wR(ℓ)),

such that for all ℓ ∈ [ℓ, ℓ] and p ∈ [p, p]:

1. Walrasian equilibrium in the land market: The pair (k(ℓ),m(ℓ, p)) is a competitive equilib-

rium of the land market, pinning down Γℓ(·) and also l(·, ℓ);

2. Optimal wage posting: w(y, ℓ) is consistent with (4) for all firm types y ∈ [y, y];

3. Optimal worker behavior: Employed workers accept job offers from more productive firms;

unemployed workers accept any job y with w(y, ℓ) ≥ wR(ℓ), where wR(ℓ) is pinned down by (2);

4. Flow-balance conditions (11) and (12) hold, pinning down u(ℓ) and Gℓ(·);

5. Good market clearing (10) holds.

3 Equilibrium Analysis

3.1 Spatial Firm Sorting

We now analyze the patterns of firm sorting that occur in equilibrium. We provide conditions

under which more productive firm types p sort into more productive locations ℓ. This is an

allocation with positive assortative matching (PAM), which, as we show below, is the empirically

relevant case (see Appendix SA.2.1 for the analysis of negative sorting).

Sufficient Conditions for Positive Sorting. We focus on pure assignments between (p, ℓ), in

which any two firms of the same type are matched to the same location type (and vice versa).

Assignment mp(p|ℓ) can then be captured by a matching function µ : [ℓ, ℓ] → [p, p]. We define

positive sorting in a standard way.

Definition 2 (Positive Sorting of Firms to Locations). There is positive sorting in (p, ℓ) if

matching function µ is strictly increasing, µ′(ℓ) > 0.

11



Under positive sorting, more productive firms sort into more productive locations. Moreover,

mp(p|ℓ) has positive mass only at a single point p = µ(ℓ), and we can simplify the endogenous

distribution of firms in location ℓ in (8) to

Γℓ(y) = Γ(y|µ(ℓ)),

so that high-ℓ locations have ex post productivity distributions that are stochastically better.11

To obtain sufficient conditions for positive sorting, recall that firm p chooses location ℓ to

maximize J(p, ℓ) given in (6). Based on results from the literature on monotone comparative

statics (Milgrom and Shannon, 1994), the optimal location choice is increasing in p if J(p, ℓ)

satisfies a strict single-crossing property in (p, ℓ), for which strict supermodularity in (p, ℓ) is

sufficient.12 Thus, complementarities of J(p, ℓ) in (p, ℓ) lead to positive sorting, which echoes

familiar insights from the literature on sorting. We now derive conditions on primitives that

guarantee this property of J(p, ℓ). We postulate that firms anticipate positive sorting when

making their location choices, and check that their optimal behavior indeed induces PAM.13

Recalling how J(p, ℓ) varies with ℓ (see FOC (7)) and using the assumption that p shifts

Γ(y|p) in the FOSD sense, we note that the supermodularity of J(p, ℓ)—and thus firm sorting—

is controlled by the location choice trade-off between productivity gains and competition:

∂2J(p, ℓ)

∂p∂ℓ
> 0 if

∂ ln

(
∂z(y,A(ℓ))

∂y

)
∂ℓ︸ ︷︷ ︸

Productivity Gains

+
∂ ln l(y, ℓ)

∂ℓ︸ ︷︷ ︸
Cost of Competition

> 0. (13)

Whereas the local productivity gains from settling into high-ℓ locations are positive if production

technology z is supermodular (first term in (13)), the local competition effect is negative under

positive sorting since productive firms cluster in the best locations (second term in (13)). Positive

sorting thus emerges if the productivity benefits that boost profits per worker outweigh the costs

from competition that translate into lower expected firm size.

Productivity gains are large if productivity differences across space are large (the A-schedule

is steep) and when complementarities of z in (y,A) are strong. Note that for the multiplicative

technology z(y,A) = yA—the functional form used in our quantitative analysis—these gains

become ∂ lnA(ℓ)/∂ℓ and (13) reduces to a comparison between local TFP and local competition.
11Cdf Mp(·|ℓ) (corresponding to density mp(·|ℓ)) is a Dirac measure that concentrates its mass at p = µ(ℓ) and (8) becomes

Γℓ(y) =

∫ p

p

Γ(y|p)mp(p|ℓ)dp =

∫ p

p

Γ(y|p)dMp(p|ℓ) = Γ(y|µ(ℓ)).

12Strict single crossing of J(p, ℓ) guarantees that µ is weakly increasing, while the additional assumption of strictly positive
densities r and q, make µ strictly increasing.

13Below we check the case in which firms do not postulate PAM and show that it is not consistent with equilibrium.
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In turn, the cost of local competition depresses firm size and is captured by

∂ ln l(y, ℓ)

∂ℓ
= − 2φE

1 + φE (1− Γℓ (y))

(
−∂Γℓ (y)

∂ℓ

)
≤ 0. (14)

It depends on two forces: first, on how endogenous firm distribution Γℓ varies across space, and

second, on the degree of labor market frictions φE = λE/δ that determines the impact of changes

in Γℓ on firm size. The cost of sorting into a high-ℓ region is low when λE—the rate at which

employed workers meet firms—is small, since in that case poaching and competition do not matter

much. The cost is also low if δ is large, so that match duration is mainly determined by workers

who separate into unemployment as opposed to quitting. In this case, hiring predominantly

results from unemployment and, again, poaching considerations carry less weight. The ratio φE

captures both of these forces. A small φE weakens the competition channel so that it does not

interfere with the productivity motive for positive spatial sorting.

To guarantee the supermodularity of J(p, ℓ) in (p, ℓ) in terms of primitives, we use (13) and

(14) to obtain the following sufficient condition for PAM:

Proposition 1 (Spatial Sorting of Firms). If z is strictly supermodular, and either the produc-

tivity gains from sorting into higher ℓ are sufficiently large or the competition forces are suffi-

ciently small (i.e., φE is sufficiently small), then any equilibrium features positive sorting of firms

p to locations ℓ with p = µ(ℓ) = Q−1(R(ℓ)).

The proof is in Appendix A.1, where we make the statements regarding “sufficiently large

productivity gains” and “sufficiently small φE” precise.

Under the conditions of Proposition 1, the productivity gain from settling into high-ℓ locations

outweighs the cost from competition for firms of all y-types. But—due to productive complemen-

tarities between (y,A)—the net benefit is especially high for those firms with high y, which high

ex ante productivity p yields stochastically. Highly productive firms are thus willing to pay higher

land prices, outbidding the less productive firms in the competition for land in high-ℓ locations.

As a consequence, positive sorting arises, whereby high-ℓ locations have more productive firms

in a FOSD sense, ∂Γℓ/∂ℓ =
(
∂Γ(y|µ(ℓ))/∂p

)
µ′(ℓ) ≤ 0.

Note that, in the absence of on-the-job search, φE = 0, ∂ ln l(y, ℓ)/∂ℓ = 0 and complementari-

ties in production are enough to sustain positive sorting.14 It may be surprising at first sight that

larger labor market frictions (lower φE) facilitate sorting. What is important to realize, however,

is that in the frictionless case, φE → ∞, a winner-takes-all allocation takes hold whereby the
14Even though frictions (small φE) facilitate positive sorting in our context, they alone are not sufficient: Some complemen-

tarities of z in (y,A) are needed, otherwise ∂2J/∂ℓ∂p—see equation (A.2) in Appendix A.1—cannot be positive.
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most productive firm attracts all workers in a given location. Ex ante, this discourages firms

from collocating with productive peers, which prevents positive sorting.

Generalizations. We generalize our main Proposition 1 in various ways. First, we can

allow for endogenous productivity spillovers. Instead of assuming exogenous differences in A, we

assume that A depends on the endogenous composition of firms in ℓ; i.e., A(ℓ) = Ã(Γℓ), where Ã

is increasing in the location’s average firm productivity; see Proposition SA2, Appendix SA.3.2.

Second, we endogenize vacancy creation; see Proposition SA3 in Appendix SA.3.3. Third, we

endogenize land distribution R by allowing it to depend on land demand through price k(·); see

Proposition SA4 in Appendix SA.3.4). Finally, we can allow for labor mobility and residential

housing (Proposition A2, Appendix B), endogenizing local population size, which will be our

quantitative setting and further discussed below. In all these extended settings, we show that

essentially the same trade-off between productivity and competition still determines firm sorting.

3.2 Existence and Uniqueness

We also show that when sorting is positive, a unique equilibrium exists.

Proposition 2 (Existence & Uniqueness). Assume that the conditions from Proposition 1 hold;

then a unique equilibrium (up to a constant of integration in land price function k) exists.

The proof is in Appendix A.2. We show the existence of a fixed point in Γℓ by construction. In

turn, uniqueness arises because, under the conditions on primitives stated in Proposition 1, the

impact of endogenous firm composition on the firms’ value function leaves the complementarity

properties of J unchanged.

To summarize how the equilibrium with positive sorting works in our model, note that spatial

firm sorting, local land prices, and location-specific wages are all jointly determined. But it is

instructive to think of the equilibrium in two stages: First, the land market equilibrium, which

pins down the upward-sloping matching function, µ (allocating more productive firms ex ante

to more productive locations) and thus local firm productivity Γℓ(y) = Γ(y|µ(ℓ)); and the land

price schedule, k, sustaining this allocation through a steep enough slope to ensure that high-ℓ

locations are so expensive that only firm types with the highest willingness to pay—i.e., the most

productive ones—settle there. And second, the labor market equilibrium within each ℓ, which pins

down the wage and the distribution of employment as a function of firm ex post productivity, Γℓ.
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4 The Distributional Implications of Spatial Firm Sorting

In this section, we use our model to study the implications of spatial firm sorting for local

monopsony power on the one hand, and for spatial wage disparities on the other. We show

that positive firm sorting leads to higher monopsony power and thus lower labor shares in more

productive locations, as well as higher wage dispersion and average wages—predictions will assess

empirically and quantitatively below.

4.1 Spatial Firm Sorting, Local Monopsony Power and Local Labor Shares

A central implication of positive firm sorting is that it induces spatial differences in firms’ labor

market power. This, in turn, implies that local labor shares are lower in productive locations.

Formally, the local labor share, LS(ℓ), can be expressed as the weighted average of firm-level

labor shares Ls(y, ℓ) := w(y, ℓ)/z(y,A(ℓ)) in each ℓ,

LS(ℓ) ≡
∫ y

y
Ls(y, ℓ)g̃ℓ(y)dy,

where g̃ℓ is the value-added weighted employment distribution with corresponding cdf G̃ℓ (see

Appendix A.3 for the derivation). The spatial gradient of the local labor share is then given by

∂LS(ℓ)

∂ℓ
=

∫ y

y

(
∂Ls(y, ℓ)

∂y︸ ︷︷ ︸
Within-Location Heterogeneity in

Firm Monopsony Power

×

(
−∂G̃ℓ(y)

∂ℓ

)
︸ ︷︷ ︸
Spatial Variation in

Employment Composition

+
∂2Ls(y, ℓ)

∂y∂ℓ︸ ︷︷ ︸
Spatial Variation in

Firm Monopsony Power

×(1− G̃ℓ(y))

)
dy. (15)

The main economic forces pushing toward declining local labor shares, LS(ℓ), are contained

in the first product term of decomposition (15). The derivative, ∂Ls(y, ℓ)/∂y, captures how

firm-level labor shares vary with productivity within a location. As we will show, under natural

conditions on primitives, this term is negative, reflecting the fact that more productive firms have

more monopsony power and hence lower labor shares. In turn, the derivative, (−∂G̃ℓ(y)/∂ℓ),

captures how the employment composition varies across space. Positive firm sorting triggers a

composition effect and helps ensure that this term is positive since high-ℓ locations have more

employment concentrated in productive firms. The first term in (15) is thus negative, pushing

toward local labor shares, LS(ℓ), that are decreasing in ℓ.

The intuition is straightforward and stems from differences in firm monopsony power within

locations paired with differences in employment composition across locations: Under positive

sorting, high-ℓ places tend to have a better firm composition and thus employment distributions

that are tilted toward productive, “superstar” firms. If, additionally, more productive firms in

any given ℓ face milder competition than less productive firms, and thus have more monopsony
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power and lower labor shares Ls(y, ℓ), locations in which employment is concentrated in top firms

have a lower aggregate labor share, LS(ℓ).

The second term in (15) reflects an additional force behind a declining local labor share, namely

a submodular firm-level labor share Ls(y, ℓ), which captures how firm-level labor shares vary

across ℓ.15 We now formalize this result in terms of primitives; see Appendix A.3 for the proof.

Proposition 3 (Firm Sorting & Local Labor Shares). Suppose γ(·|p) is sufficiently decreasing, z

sufficiently log-supermodular in (y, ℓ), and φE sufficiently small. If there is positive firm sorting

across space, then the local labor share, LS(·), is decreasing in ℓ.

Our key insight from Proposition 3 is that positive firm sorting pushes toward a lower local

labor share in high-ℓ places if the local density of firm productivity, γ(·|p), is sufficiently decreas-

ing.16 This is because, within each location, γ(·|p) crucially determines whether the firm-level

labor shares are declining in firm productivity y: A decreasing local firm density implies that in

each ℓ, high-productivity companies are surrounded by fewer firms locally than low-productivity

firms. As a consequence, they face less labor market competition, which translates into more

monopsony power and lower labor shares of top firms in all locations, ∂Ls(y, ℓ)/∂y < 0, despite

the fact that they pay higher wages.

Several densities that are commonly used to model firm heterogeneity satisfy the discussed

condition, such as the log-normal and Pareto distributions. Figure 1 illustrates the intuition

behind Proposition 3 for both cases: the log-normal productivity distribution in the left panel

and Pareto productivity distribution in the middle panel. In each of these panels, we depict

the firm-level labor share, Ls(·, ℓ), and the local value-added weighted employment distribution

g̃(·|µ(ℓ)), for the most and least productive locations ℓ ∈ {ℓ, ℓ}. The fact that the firm-level labor

share, Ls(·, ℓ), is declining in y within each location, together with positive firm sorting—which

puts more mass on high-y firms in location ℓ and induces employment density g̃ℓ to first-order

stochastically dominate g̃ℓ— implies that average local labor shares are declining in location

productivity, ∂LS(ℓ)/∂ℓ < 0; see Figure 1, right panel.17

In our quantitative setting, we will assume Γ(y|p) ∼ Pareto(1, 1/p). Indeed, for multiplicative

z, the local labor share then only depends on the Pareto tail coefficient, p, of the local productivity
15Submodularity of the firm-level labor share means that productive firms in high-ℓ locations have especially strong monop-

sony power and thus even lower labor shares than their counterparts in low-ℓ areas, which would further lower the average la-
bor share in their location. Clearly, this is sufficient but not necessary for our result to hold.

16The remaining conditions from the proposition (sufficient complementarities in z and small enough φE) guarantee that the
cross-partial term, ∂2Ls(y, ℓ)/∂y∂ℓ, in (15) is negative.

17Interestingly, Figure 1 shows that the firm-level labor share at the upper end of the productivity distribution is lower in
low -ℓ locations. With positive sorting, productive firms are particularly scarce in low-ℓ labor markets and hence have plenty of
monopsony power. But their average local labor share is higher because they have few of these highly productive firms.
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Figure 1: Firm Sorting and Decreasing Firm-Level Labor Shares Induce Decreasing Local Labor Shares
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Notes: The left and middle panels plot for two locations—the top and bottom ℓ—firm-level labor shares and the value-
added weighted employment distribution. In the left panel, firm ex-post productivity is (truncated) log-normally distributed
with p shifting the mean productivity across space. We left-truncate this distribution at the median productivity of the
worst location such that its density is sufficiently decreasing, in line with Proposition 3. In the middle panel, firm ex post
productivity is Pareto distributed with p shifting up the tail coefficient. In the right panel, we plot for both cases—log normal
and Pareto firm productivity—the resulting local labor shares across locations. Source: Authors’ model simulations.

distribution (see Gouin-Bonenfant (2022) for a similar result under Pareto in a single-market

economy), which circumvents the need for additional restrictions on γ, φE and z from Proposition

3. Under positive sorting, high-ℓ locations have a thicker tail and thus more mass of firms with

high monopsony power, which reduces the local labor share; see Appendix A.4 for the proof.

Corollary 1 (Firm Sorting & Local Labor Shares: Pareto). Suppose Γ(y|p) ∼ Pareto(1, 1/p)

and z(y,A(ℓ)) = yA(ℓ). The local labor share is then given by LS(ℓ) = 1− µ(ℓ) (with µ(ℓ) = p)

and hence decreasing in ℓ if and only if there is positive firm sorting across space.

Corollary 1 shows the link between firm sorting and local monopsony power in the clearest

form: If more productive labor markets are able to attract better firms, their local labor shares are

lower. The local labor share here reflects only the thickness of the local productivity distribution,

i.e. the relative abundance of “superstar” firms, but is independent of the efficiency of OJS, φE .

This is because, under the Pareto assumption, a change in φE induces changes in the employment

composition and firm-level labor shares that cancel out.18 This corollary plays an important role

in our quantitative analysis below because it allows us to infer firm sorting, captured by µ(ℓ),

directly from local labor shares.19

We end by emphasizing the central assumptions underlying the negative relationship between

local firm productivity and local labor share. Importantly, Proposition 3 does not hinge on the
18Suppose, for example, φE was lower. In all locations, the employment composition would shift toward low-productivity

firms because high-productivity firms would poach workers at a lower rate. Everything else equal, this would increase local
labor shares because firm-level labor shares of less productive firms are higher. However, a lower φE also reduces labor market
competition and therefore firm-level labor shares. This tends to reduce local labor shares everywhere. These effects cancel out.

19In the Appendix, we supplement this result on how to detect firm sorting, using the spatial variation in local productivity
dispersion (Proposition SA5 and Corollary SA1) or the spatial variation in the relationship between the local and the global
productivity rank of firms (Proposition SA6).
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assumption of Pareto-distributed firm productivity or fatter tails of firm productivity in high-ℓ

locations. Instead, what is central is a sufficiently decreasing local density of firm productivity,

something many distributions satisfy. Apart from the decreasing shape of γ(·|p) what is important

is that spatial firm sorting gives rise to more mass on highly productive firms in some locations

relative to others—something we term a “non-neutral firm productivity shift”. This is achieved by

assuming that γ(y|p) has common support across all p (Assumption 1.1) together with the strict

monotone likelihood ratio property of γ(y|p) in (y, p). By contrast, if spatial sorting were to give

rise to “neutral firm productivity shifts” across locations, in the sense that firm productivity in

some location ℓ′ is simply a scaled version of that in some ℓ, y′ = ay, a > 0 (violating common

support), there is the same mass on high-productivity firms in all locations and, consequently,

no spatial variation in local labor shares (see Appendix A.8 for details).

As an example of a “neutral shift”, suppose the distribution of firm productivity was Pareto

with Γ(y|p) ∼ Pareto(p, 1/θ). Thus, firm sorting, captured by p = µ(ℓ), would not affect the

relative mass of superstar firms across locations (tail coefficient 1/θ is a parameter here and does

not vary in ℓ) but only the lower bound of firm productivity. By Corollary 1, the local labor

share would be given by LS = 1 − θ and hence constant in ℓ despite firm sorting. However, we

will show that empirically, prosperous locations have lower labor shares, which suggests that firm

sorting induces, at least partially, non-neutral productivity shifts across space.

4.2 Spatial Firm Sorting, Local Wage Ladders and Wage Inequality

We now turn to the implications of firm sorting for spatial wage disparities. In the previous

section, we showed that firm sorting affects local wage distributions because it alters the local

composition of firms and thus the degree of local labor market competition. In this section, we

will show that similar forces have important implications for spatial wage inequality: Positive

firm sorting steepens the local wage ladder in productive locations and thereby leads to higher

wage dispersion and average wages.

To simplify the exposition, we will derive the intuition behind the propositions in this section

for the case of multiplicative technology z(y,A(ℓ)) = yA(ℓ), but none of our results depend on

this assumption.20 In this case, wage schedule (5) reads

w(y, ℓ) = A(ℓ)

(
y −

∫ y

y

l(t, ℓ)

l(y, ℓ)
dt

)
. (16)

This wage function is instructive because it is log-additive in location TFP A(ℓ) and a term that
20The proofs in this section are contained in Appendices A.5-A.6.
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captures firm y’s competition through its relative firm size, l(t, ℓ)/l(y, ℓ). Firm size is determined

by firm sorting through local productivity distribution Γℓ and the extent of labor market frictions

φE , but not by A(ℓ) (see (3)). We refer to (16) as the local wage ladder or job ladder.

We first analyze the relationship between firm sorting and wage inequality within locations,

which we measure by the local relative wage between a firm with rank R = Γℓ(y) in the local pro-

ductivity distribution relative to the least productive firm with R = 0, w(Γ−1
ℓ (R), ℓ)/w(Γ−1

ℓ (0), ℓ).

This statistic—which does not depend on A(ℓ) and captures the steepness of the local wage lad-

der—proxies in a tractable way standard measures of wage inequality, such as the wage gap

between the 95th and 5th percentile of wages when choosing R sufficiently high.

To show that wage inequality is higher in high-ℓ locations if firm sorting is positive, we analyze

the derivative of our wage dispersion measure wrt ℓ, which equals in sign ( s
=)

∂
w(Γ−1

ℓ (R),ℓ)
w(Γ−1

ℓ (0),ℓ)

∂ℓ

s
=

∫ Γ−1
ℓ (R)

y
2φE

(
1 + φE(1−R)

)2
(1 + φE (1− Γℓ(t)))

3

(
−∂Γℓ(t)

∂ℓ

)
︸ ︷︷ ︸

Spatial Variation in
Firm Composition

dt, (17)

and which we derived from (16), using (3) and (14).

Under positive sorting, ∂Γℓ(y)/∂ℓ < 0, which then directly implies that high-ℓ locations have

steeper wage ladders and, as a consequence, more wage dispersion. The economic intuition behind

this result is simple: Within each location, the wage ladder is increasing in firm productivity y,

i.e., more productive firms pay higher wages. And due to positive firm sorting, firm composition

differs across locations, whereby a larger mass of productive firms in high-ℓ locations amplifies

competition for workers. This is reflected in the fact that any given firm productivity rank R > 0

is associated with higher productivity level y in high-ℓ compared to low-ℓ places and therefore with

higher wages. Note that we can make an additional point: Spatial differences in within-location

wage inequality require ∂Γℓ(y)/∂ℓ ̸= 0 and therefore that firms sort systematically across space.

Proposition 4 (Firm Sorting & Within-Location Wage Inequality). Suppose z is weakly log-

supermodular in (y, ℓ). If there is positive firm sorting across space, then wage dispersion,

w(Γ−1
ℓ (R), ℓ)/w(Γ−1

ℓ (0), ℓ), is increasing in ℓ.

We illustrate this result in Figure 2, which depicts two representations of the local wage ladder

in the most and least productive locations. In the left panel, we plot wages as a function of firms’

ex post productivity y, based on (16). Two properties stand out. First, the wage intercept,

w(y, ℓ) = yA(ℓ), is increasing in ℓ, which reflects spatial differences in local productivity A(ℓ).

Second, while more productive firms pay higher wages everywhere, the local wage ladder is steeper
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Figure 2: Spatial Firm Sorting and Local Wage Ladders
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Notes: The left panel shows the wage ladder as a function of firm productivity y for the least productive location ℓ (red) and
most productive location ℓ (yellow). The right panel shows the wage at firm productivity quantile R relative to the wage at
the lowest ranked firm for the same two locations. Source: Authors’ model simulations.

in high-ℓ locations. This differential steepness of the wage ladder is more directly seen in the

right panel, which plots our statistic of the relative wage as a function of local productivity rank,

w(Γ−1
ℓ (R), ℓ)/w(Γ−1

ℓ (0), ℓ). Positive firm sorting implies that a given firm rank R translates into

a higher productivity level y, and hence higher wages, in productive locations. To illustrate

this, we indicate in the left panel for each location the firm productivity level, y = Γ−1
ℓ (R),

corresponding to the 80th quantile, R = 0.8, of the local firm distribution and the associated

wages, where we obtain Γ−1
ℓ

(0.8) > Γ−1
ℓ (0.8) and, thus, w(Γ−1

ℓ
(0.8), ℓ) > w(Γ−1

ℓ (0.8), ℓ); this

translates into w(Γ−1
ℓ

(0.8), ℓ)/w(Γ−1
ℓ

(0), ℓ)>w(Γ−1
ℓ (0.8), ℓ)/w(Γ−1

ℓ (0), ℓ) in the right panel.

We emphasize that there are two important assumptions that underlie the relationship between

firm sorting and local wage dispersion: First, firm sorting affects the local wage ladder and

thus local wage dispersion only if there is OJS. Without OJS, φE = 0, local wage ladders

collapse everywhere and all workers receive their local reservation wage—a spatial Diamond

paradox. Second, as for our results on local labor shares in Section 4.1, firm sorting affects

spatial wage inequality only if it induces non-neutral firm productivity shifts across locations—

guaranteed by our assumptions that γ(y|p) has common support for all p and satisfies the strict

monotone likelihood ratio property in (y, p). By contrast, if firm heterogeneity across space was

characterized by neutral productivity shifts, the composition of firms—i.e., the relative amount

of productive firms—would not differ across ℓ. As a consequence, wage ladders would be equally

steep everywhere, inducing the same within-location inequality in all locations (see Appendix

A.8 for details). Thus, the wage structure would be very much the same everywhere, something

that we show below is counterfactual vis-a-vis the actual data. Importantly, none of our results

in this section hinges on the assumption of Pareto-distributed firm productivity or fatter tails of
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firm productivity in high-ℓ places.

Finally, show that the effect of firm sorting on the steepness of local wage ladders is also

a central determinant of wage level differences between locations. Consider, for example, the

spatial wage premium, that is the average wage of more productive locations relative to the least

productive one, E[w(Γ−1
ℓ (R), ℓ)|ℓ]/E[w(Γ−1

ℓ (R), ℓ)|ℓ], where—consistently with our measure on

within-location inequality above—we define this statistic using firm ranks instead of their level

of productivity.21 To see that wages are higher in high-ℓ locations, note that the derivative of

the spatial wage premium wrt ℓ is equal in sign to (see Appendix A.6)

∂
E[w(Γ−1

ℓ (R),ℓ)|ℓ]
E[w(Γ−1

ℓ (R),ℓ)|ℓ]

∂ℓ

s
= A′(ℓ)y︸ ︷︷ ︸

Spatial Variation in
Wage Ladder Intercept

∫ 1

0

w(Γ−1
ℓ (R), ℓ)

w(Γ−1
ℓ (0), ℓ)

l̃(R)dR + A(ℓ)y

∫ 1

0

∂

∂ℓ

(
w(Γ−1

ℓ (R), ℓ)

w(Γ−1
ℓ (0), ℓ)

)
︸ ︷︷ ︸

Spatial Variation in
Steepness of Wage Ladder

l̃(R)dR, (18)

where l̃(R) = gℓ(Γ
−1
ℓ (R))/γℓ(Γ

−1
ℓ (R)) is the size density of a firm with rank R and independent

of ℓ. This expression is positive and highlights two fundamental differences between locations ℓ

and ℓ, which boost wages in more productive places: Location ℓ has higher TFP, A(ℓ), and—in

our equilibrium with positive sorting—a better distribution of firms, Γℓ. Higher location TFP

increases the intercept of the wage ladder in high-ℓ locations. In turn, as we have shown in Propo-

sition 4, positive firm sorting leads to steeper wage ladders in high-ℓ locations. We summarize:22

Proposition 5. Suppose z is weakly log-supermodular in (y, ℓ). If there is positive firm sorting

across space, then spatial wage premium E[w(Γ−1
ℓ (R), ℓ)|ℓ]/E[w(Γ−1

ℓ (R), ℓ)|ℓ] is increasing in ℓ.

In our quantitative analysis we provide a structural decomposition of (18) and separate the

observed variation in wages across space into the part that stems from the exogenous differences

in TFP and the part that is due to endogenous firm sorting.

5 Descriptive Evidence

Turning to our empirical application, we first assess our model’s qualitative predictions on the

link between firm sorting, monopsony power, and spatial wage disparities. In Sections 6 and 7, we

estimate our model to highlight the quantitative implications of firm sorting for spatial inequality.

5.1 Data and Measurement

We base our analysis on 257 commuting zones (CZ)—our local labor markets. For graphical

illustrations, it is convenient to order locations by index ℓ—or, equivalently, by local TFP A(ℓ)—
21Both formulations (based on level or rank) render the same implications for the spatial wage premium (Appendix A.6).
22Note that, in contrast to our previous results on local labor share and local wage dispersion, even neutral productivity

shifts would generically give rise to a spatial wage premium through spatial differences in A(ℓ) and thus the wage intercept.
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which however are both unobserved. We therefore use local GDP per capita as a proxy for ℓ,

which, albeit endogenous in our model, is increasing in A(ℓ). In our quantitative analysis, we draw

on our estimated model to exactly decompose local GDP into A and endogenous firm sorting.

We use three main data sources: (i) regional data from the German Federal Statistical Office

on GDP per capita, labor compensation, value added, and unemployment rates for each CZ;

(ii) a worker-level panel from linked employer-employee data in Germany (LIAB) provided by

the Research Data Centre (FDZ) of the German Federal Employment Agency, which are based

on workers’ social security records and contain information on wages and worker flows; and

(iii) firm-level data from the Establishment History Panel (BHP), a 50% random sample of all

German establishments with at least one employee subject to social security as of June 30 in

any given year.23 From the BHP, we construct firm-level average wages—the relevant concept

of wages through the lens of our theory—to assess wage inequality within and across local labor

markets. We deflate wages using a nationwide CPI.24 We complement our main data sources

with information on firm-level sales from the German Establishment Panel (EP). Throughout,

we focus on the period 2010-2017 (using an average).

In Appendix C, we describe these data sources in more detail and define important variables.

In Appendix SA.5, we report some basic statistics, which show that average wages, firm size, and

value added differ substantially across commuting zones (see Table SA.2).

5.2 Spatial Firm Sorting: Evidence

Guided by our model predictions from Section 4, we now provide evidence that more productive

firms sort into more productive locations. Obtaining direct evidence on firm sorting is challenging

because our dataset—like many others—does not contain a clean measure of physical firm pro-

ductivity and does not allow us to identify firm movers.25 And deducing firm sorting indirectly

from spatial variation in commonly observed outcomes, such as wages or value added, is also dif-

ficult because these statistics conflate firm sorting with local TFP differences. We therefore focus

on those measures that, according to our theory, are only impacted by firm sorting: local labor

shares and within-location wage inequality. We also provide direct evidence on the underlying

mechanisms our theory highlights.
23The data are at establishment level, but we use the terms “firm” and “establishment” interchangeably.
24This is consistent with our model, which features nominal wages (the good’s price is normalized to 1). We show in Table

A.1 (Appendix D.1) that spatial inequality remains substantial even when adjusting for regional price deflators.
25We deliberately do not use AKM firm fixed effects as a proxy for firm productivity since they conflate firm with location

productivity. Moreover, limited mobility bias tends to inflate the variance of these (FDZ-provided) firm fixed effects (e.g.,
Bonhomme et al., 2022), which makes them unsuitable for assessing local firm productivity distributions, especially in small CZs.
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Local Labor Shares. Our model highlights that local labor shares identify the extent of spatial

firm sorting (Proposition 3 and Corollary 1). As stated in Corollary 1, if firm ex ante productivity

is Pareto distributed and technology multiplicative, local labor shares are pinned down by the tail

parameter of the local productivity distribution that is shaped by firm sorting, LS(ℓ) = 1−µ(ℓ).26

Specifically, there is positive sorting of firms across space, µ′(ℓ) > 0, if the local labor share is

decreasing in ℓ. The top left panel of Figure 3 shows that richer locations indeed have lower labor

shares—which we believe is a new fact—and this spatial variation is economically meaningful:

The labor share is about 6% lower in rich compared with poor CZs.27

As highlighted in our discussion of Proposition 3, this negative correlation arises because more

productive firms have more monopsony power and thus lower firm-level labor shares—something

that resonates with empirical findings from a variety of countries (e.g., Lochner and Schulz, 2022

for Germany; Bontemps et al., 2000 and Cahuc et al., 2006 for France; Autor et al., 2020 and Yeh

et al., 2022 for the US).28 Rich locations with low average local labor shares must then have a

higher concentration of employment in top firms whose labor share is low—a composition effect

implied by positive firm sorting.

While our theory implies that local labor shares only depend on firm sorting µ, we now

explore whether other mechanisms outside of our model can explain the documented labor share

patterns. We summarize this discussion in the first column of Table 1, which reports in row 1 our

baseline correlation between local labor shares and GDP per capita from Figure 3. A first concern

might be that this correlation does not reflect firm sorting but is driven by regional differences

in the industrial composition (Gaubert, 2018). For example, the negative correlation between

local GDP and local labor shares could be driven by the greater importance of capital-intensive

industries in prosperous locations or industry-specific union power. However, when controlling for

regional differences in the industrial composition through sectoral employment shares in row 2, the

negative relationship between local labor shares and local GDP becomes even more pronounced.

In rows 3 and 4, we control for spatial differences in worker composition. If, for example, skilled
26Appendix SA.4.1 provides empirical support for the Pareto assumption based on tail variation in local productivity.
27Appendix SA.4.1 supplements this evidence of positive firm sorting, using spatial variation in firm sales per worker. We

document that the within-location dispersion in sales per worker is larger in productive labor markets, which—based on Corollary
SA1, Appendix SA.4.1—indicates positive firm sorting across space. In addition, we show that the empirical relationship
between the difference in firms’ global and local productivity ranks and firm productivity is consistent with spatial firm sorting
(Proposition SA6, Appendix SA.4.2). However, given that we observe sales for only a small subset of firms, our preferred evidence
for spatial firm sorting stems from local labor shares, based on regional data from the German Federal Statistical Office.

28Given the link between local labor shares and firm composition in our model, measuring local labor market power based on
the labor share is natural in our context. Alternative models/data may suggest a different route, e.g., by estimating firm-level
labor supply elasticities (Manning, 2003, Manning, 2011, Hirsch et al., 2020), which are then aggregated to the local level, or by
computing local concentration indices (e.g., Berger et al., 2022a, Berger et al., 2023 who build on Atkeson and Burstein, 2008).
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Figure 3: Implications of Spatial Firm Sorting: Spatial Variation in Labor Shares, Within-Location Wage
Inequality, Wage Ladders and EE Returns
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Notes: Data sources: BHP and LIAB. In the top left panel, we plot local labor shares against local log GDP pc. Local labor
shares are defined as the ratio between labor compensation and gross value added in each CZ (see Appendix C.1 for details).
In the top right panel, we plot the local 90-10 log difference in firm-level wages against local GDP pc. In the bottom left
panel, we display wage quantiles relative to the 5% quantile for four groups of CZs, ordered by quartiles of local GDPpc. In
the bottom right panel, we plot location-specific EE returns, i.e., βEE

ℓ based on (20), against log GDP pc. The size of the
markers either indicates the number of firms or the number of EE moves within each CZ, depending on the panel.

workers have more bargaining power or skilled work is complimentary with capital, spatial worker

sorting (e.g., Diamond, 2016; Heise and Porzio, 2022) rather than firm sorting could drive the

negative relationship between labor shares and GDP per capita. But when we control for the

observed skill composition of the local workforce (row 3) or for differences in unobserved skills via

the local average AKM worker fixed effect provided by the FDZ (row 4), the negative relationship

between local labor shares and GDP gets reinforced.

Finally, a potential concern may be that land—a factor of production our model omits—is

more expensive in rich places, which could mechanically lower their local labor shares. In row 5,

we control for local prices of commercial real estate, which does not affect our conclusion.

Wage Inequality Within Labor Markets. As we have shown in Proposition 4, within-

location inequality is greater in high-ℓ locations if firm sorting is positive, independent of local
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Table 1: Labor Shares, EE Returns, and Wage Inequality Within/Across Local Labor Markets

(1) (2) (3) (4)
Labor share 90-10 Log Wage Diff. Log Wage EE Return

Log GDPpc [No Controls] -0.0632∗∗∗ 0.3172∗∗∗ 0.5350∗∗∗ 0.1094∗∗∗
(0.0088) (0.0459) (0.0271) (0.0313)

Log GDPpc [Control: Industry] -0.1024∗∗∗ 0.2328∗∗∗ 0.5116∗∗∗ 0.1057∗∗∗
(0.0212) (0.0362) (0.0253) (0.0315)

Log GDPpc [Control: Observed Comp.] -0.1130∗∗∗ 0.1052∗∗∗ 0.3560∗∗∗ 0.1082∗∗∗
(0.0134) (0.0203) (0.0330) (0.0314)

Log GDPpc [Control: Unobserved Comp.] -0.0776∗∗∗ 0.2094∗∗∗ 0.1880∗∗∗ 0.1087∗∗∗
(0.0104) (0.0267) (0.0301) (0.0317)

Log GDPpc [Control: Other] -0.0997∗∗∗ 0.2029∗∗∗ 0.4723∗∗∗ 0.1152∗∗
(0.0183) (0.0601) (0.0418) (0.0385)

N 257 257 257 257

Notes: Data Sources: German Federal Statistical Office, BHP, and LIAB. We report coefficient β from the regression Υℓ =
β lnGDPpcℓ + ϵℓ, where GDPpcℓ denotes GDP per capita in CZ ℓ and Υℓ denotes one of the outcomes in the different columns.
The different rows refer to the inclusion of various controls at the regional level (column 1) or to the case in which we residualize
firm/worker-level outcomes at the micro level before aggregating them to regional outcome Υℓ (columns 2-4). In row 2, we
account for industry impact: by controlling for local employment shares in seven industries (agriculture; mining and utilities;
manufacturing; construction; trade and transportation; professional services; public administration and health) in column 1; by
residualizing firm-level wages before computing the regional wage outcomes in columns 2 and 3; and by controlling for 1-digit
industry fixed effects in (20) when estimating the LHS variable βEE

ℓ in column 4. In row 3, we control for workers’ observable
skills/traits: through local shares of college graduates (column 1); by residualizing firm-level wages using firms’ shares of college
graduates (column 2 and 3); and by controlling for age/gender/education when estimating βEE

ℓ from (20) (column 4). In row 4,
we control for workers’ unobserved skills: by controlling for workers’ average local AKM fixed effects (provided by the FDZ) in
column 1; or by including individual (not AKM) fixed effects when estimating (20) for column 4; in columns 2 and 3, we use the
LIAB and compute workers’ residual wages as w̃iℓ,t ≡ lnwiℓ,t −αi, where wiℓ,t is the wage of worker i in location ℓ and month t,
and αi is the AKM worker fixed effect (from FDZ). We then compute local wage dispersion (column 2) and average wages (column
3) after taking out month fixed effects. In row 5, we control for local corporate real estate prices in column 1 and for log population
density in columns 2-4. Due to limited availability of local land prices, the regression in row 5, column 1, has only 118 observation.

productivity A(ℓ). The top right panel of Figure 3 displays the relationship between income per

capita and local wage inequality, which we measure by the difference between the 90th and 10th

quantiles of log firm wages within each CZ. There is a clear positive relationship: The 90-10 log

wage gap is about 0.4 log points higher in the most prosperous labor markets.

While Figure 3 simply plots the unconditional correlation, this positive relationship is robust

to a variety of alternative explanations that are outside of our model. In column 2 of Table

1, we report the bivariate correlation between local GDP per capita and within-location wage

dispersion, which we compute after residualizing firm wages in different ways.

Row 2 shows that prosperous labor markets have more dispersed wages also within industries,

which addresses the concern that industries may be systematically sorted across space and, e.g.,

differ in union coverage (Jäger et al., 2022) and thus the extent of wage compression.

In rows 3 and 4, we address the possibility that local wage dispersion mostly reflects the spatial

sorting of workers (rather than firms). This may be the case if observed skills are more dispersed

in productive locations (Eeckhout et al., 2014) or if the dispersion of unobserved ability is higher

among skilled workers who cluster in those places (Card et al., 2023). In row 3, before computing
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local wage dispersion, we thus control for observed worker heterogeneity by residualizing firm-

level wages with respect the share of firms’ college graduates. The resulting correlation with local

GDP is lower but still positive and significant. To address the concern about unobserved worker

heterogeneity, we turn to worker-level (rather than firm-level) wages and purge them from their

AKM worker fixed effects (see the Notes of Table 1 for details). Row 4 shows that the correlation

between the local dispersion of residualized wages and local GDP remains positive and sizeable.

Finally, in row 5, we again consider the possibility that rich and dense places feature stronger

worker-firm sorting, which would augment local wage inequality. Controlling for local population

density, however, does not annul our baseline correlation from row 1.

Spatial Wage Inequality Across Labor Markets. We briefly turn to the implications of

our model for wage inequality across locations (Proposition 5). Poor locations are not only hurt

by adverse fundamentals but also by the fact that unproductive firms settle there. Indeed, Figure

A.1 (Appendix D.2) shows that spatial wage inequality in Germany is pervasive: Average monthly

wages paid by firms vary between 2,500EUR in the poorest and 4,500EUR in the richest places.

While our model predicts that positive firm sorting across space is one contributing factor,

spatial wage differences clearly also reflect variation in local TFP A(ℓ) and its determinants. For

completeness, column 3 of Table 1 reports the correlation between local average wages and GDP

per capita after controlling for firms’ industry (row 2), observed and unobserved heterogeneity of

workers (rows 3 and 4) and population density (row 5) and shows that the positive correlation

between local wages and GDP remains significant. In Section 6, we will use our structural model

to rigorously decompose the spatial wage gap into the contribution of firm sorting and local TFP.

The Mechanism: Firm Sorting Steepens Local Wage Ladders in High-ℓ Locations.

Our theory highlights a common mechanism of how firm sorting affects spatial wage disparities:

It steepens the local wage ladder in productive (high-ℓ) locations, thereby raising their wage

dispersion and average wages. Using firm- and worker-level micro data, we now provide direct

evidence on the spatial variation of wage ladders that is consistent with this channel.

As a first test, in Figure 3, bottom left panel, we plot local wage ladders for four groups of

labor markets that are ordered by their local GDP per capita. Specifically, we first compute the

local wage ladder in each location ℓ based on the quantiles of the firm-level wage distribution

relative to the 5% quantile of that location, w(Γ−1
ℓ (R), ℓ)/w(Γ−1

ℓ (0.05), ℓ). This allows us to

focus on the differential steepness of these local wage ladders that is driven by firm sorting and

independent of A(ℓ). We then average all wage ladders within each GDP quartile. Local wage
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ladders differ meaningfully across space: Whereas in rich regions, top wages exceed bottom wages

by a factor of almost 4, poor locations only see a rise in wages by a factor of less than 3.

This spatial heterogeneity in wage ladders has direct implications for the spatial variation in

wage returns that result from EE transitions. Indeed, it is a force that pushes toward higher

EE returns in rich locations. To see this, we show in Appendix A.7 that the spatial variation in

expected EE wage growth, E[gEEw |ℓ], is given by:29

∂E[gEEw |ℓ]
∂ℓ

s
=

∫ 1

0

∫ 1

S

(
∂

∂ℓ

(
w
(
Γ−1
ℓ (R), ℓ

)
w
(
Γ−1
ℓ (S), ℓ

) )︸ ︷︷ ︸
Spatial Variation in

Steepness of Wage Ladder

−1

)
1

(1 + φE(1− S))2
dR dS. (19)

Average EE wage growth is higher in high-ℓ locations if wages increase more rapidly across firm

productivity ranks. This highlights that the steepness of the local wage ladder is the fundamental

determinant of local EE returns.30 Because the steepness of the local wage ladder is independent

of local TFP A(ℓ), the same holds for average EE wage growth in ℓ.

While it is difficult to find broad classes of primitives under which positive firm sorting renders

(19) positive (we show in Appendix A.7, Proposition A1 and Corollary 2, that for firm productiv-

ity distributions with log-supermodular quantile functions Γ−1
ℓ (R) such as the Pareto, this result

indeed holds), we can investigate the spatial variation in EE returns empirically. We run the

following regression, which allows us to zero in on within-location moves in line with our model:

wiℓ,t − wiℓ,t−1

wiℓ,t−1
=

257∑
ℓ=1

βℓ +

257∑
ℓ=1

βEEℓ EEiℓ,t +
257∑
ℓ=1

βEXTℓ EXTiℓ,t + εiℓ,t. (20)

Here, wiℓ,t is the wage of individual i in CZ ℓ and month t, EE iℓ,t indicates whether i made an EE

move to a job in CZ ℓ between months t and t−1, and EXT iℓ,t indicates an EE transition to a job

in CZ ℓ from a job outside of ℓ. Coefficients (βℓ, βEEℓ , βEXTℓ ) are CZ fixed effects and CZ-specific

returns to EE moves from within and outside the CZ, respectively. Our coefficient of interest is

βEEℓ : the impact of an EE move within CZ ℓ on wage growth. Note that coefficients βℓ allow for

location-specific differences in average wage growth and thus capture, for example, differences in

human capital accumulation across space, which might be greater in high-ℓ places.

In the bottom right panel of Figure 3, we plot βEEℓ against local GDP per capita. More

prosperous locations have substantially higher EE returns: A single job-to-job move in the richest

German local labor market increases wages by around 20%, which is more than twice as much

29We define average wage growth achieved via an EE transition in ℓ as E
[
gEE
w |ℓ

]
=

∫ ȳ
y

∫ ȳ
y

(
w(t,ℓ)
w(y,ℓ)

−1
)
dΓℓ(t)dGℓ(y)∫ ȳ

y

∫ ȳ
y dΓℓ(t)dGℓ(y)

.

30The slight difference to the previous discussion of steeper job ladders is that here we require the wage difference between
any two ranks {R,S} of the firm distribution to be increasing in ℓ rather than between some rank R relative to the lowest.
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as in the poorest location.31 This finding is consistent with the spatial heterogeneity in dynamic

wage profiles emphasized by De La Roca and Puga (2017) and suggests that such heterogeneity

may in part reflect variation in EE returns across space, driven by firm sorting.

Within our model, the spatial variation in wage growth from EE moves, βEEℓ , only reflects

differences in firm sorting and is not directly impacted by A(ℓ) and its empirical determinants. In

Table 1 column 4, we nevertheless investigate alternative mechanisms outside of our model. To

do so, we estimate βEEℓ in (20) with different sets of RHS variables and then project it on local

log GDP per capita. Row 1 contains our baseline specification from Figure 3: A rise in GDP per

capita by one log point is associated with an increase in EE returns by 11 percentage points. We

show in row 2 that this spatial correlation is not due to a high concentration of industries with

faster EE wage growth in rich labor markets: When we estimate (20) while controlling for sector

fixed effects, our main coefficient hardly changes.

An additional concern is that spatial worker sorting drives regional differences in EE returns,

if, e.g., skilled workers predominantly settle in rich labor markets and experience faster learning

(De La Roca and Puga, 2017) or higher EE wage growth. Row 3 estimates (20) while additionally

controlling for observable worker characteristics such as age, gender and education fixed effects.

And row 4 controls for unobserved heterogeneity in individuals’ wage growth by including an

individual fixed effect in (20). Both leave the correlation between local EE returns and GDP per

capita unchanged. Finally, row 5 controls for local population density when regressing βEEℓ on

local GDP per capita, which only has a mild impact on our coefficient of interest. This addresses

the concern that higher EE returns in rich and dense locations may reflect better match quality

(see, e.g., Dauth et al., 2022) if these places benefit from increasing returns to matching.

Finally, to assess the quantitative impact of this spatial variation in EE returns on spatial

differences in the level and dispersion of wages, we perform a statistical decomposition of life-

time earnings across locations (see also Baum-Snow and Pavan, 2011), considering the following

drivers: spatial differences in wage growth due to EE moves, starting wages, wage growth during

continuing job spells, and wage growth of the frequently unemployed. We find that spatial differ-

ences in EE returns are a significant factor behind spatial differences in local wage distributions:

22% of the spatial difference in within-location inequality, as measured by the 90-10 log wage dif-

ference, and 20% of the spatial earnings gap between the 25% richest and poorest CZs that emerge

15 years into workers’ careers are due to differential EE returns. See Appendix D.3 for details.32

31We compute an average EE return of 13%, similar to the results in Heise and Porzio (2022) who also use the LIAB.
32Baum-Snow and Pavan (2011) find that differential EE wage growth across small and large US cities accounts for 13% of

the earning gap after 15 years, possibly lower than our estimate because EE returns are higher in Germany (Engbom, 2021).
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6 Estimation

To evaluate the quantitative importance of firm sorting for spatial disparities in labor market

power and wages, we structurally estimate our model. To this end, we first enrich our model

along four dimensions and then discuss our identification proof, estimation strategy, and results.

6.1 Bringing our Model to the Data

Setting. Our goal is to introduce minimal changes that render our model suitable for estimation

while preserving its key mechanism and tight link to our analytical results. First, we relax the

assumption of fully immobile labor and allow unemployed workers to settle in any location. This

feature is important, since even though we observe a high degree of local hiring, local labor

markets are not perfectly segmented.33 Second, we introduce a residential housing market in

each location, so that workers now use their flow income to consume not only the final good but

also housing. Third, we introduce local amenities that can vary with ℓ and scale individuals’ real

consumption utility. Last, we allow job separation rates δ to vary (exogenously) across locations

to rationalize the observed spatial variation in unemployment.34 Importantly, in Section 8, we

show robustness of our quantitative results to additional changes: introducing imperfect labor

mobility; dispensing with Assumption 1 so that there can be firm selection at the lower end of

the local productivity distributions; and controlling for local capital intensity via industry.

By allowing for spatial mobility among the unemployed, our model endogenizes local popula-

tion size L(ℓ), and thereby also local meeting rates of workers (λU (ℓ), λE(ℓ)) and firms λF (ℓ). We

assume that in each ℓ there is a labor market matching function with constant returns to scale, so

that meeting rates are determined by local market tightness, θ(ℓ) = V(ℓ)/U(ℓ), where the mea-

sure of vacancies in each location, V(ℓ), equals the measure of firms that settle there.35 In turn,

we let parameter κ be the relative matching efficiency of employed workers (i.e., λE(ℓ) = κλU (ℓ))

so that U(ℓ) = L(ℓ)(u(ℓ) + κ(1 − u(ℓ))) is the effective measure of searchers in ℓ, impacted

by the endogenous L(ℓ). An important implication is that firms’ and workers’ meeting rates,

(λF (ℓ), λU (ℓ), λE(ℓ)) can vary across locations. These location-specific meeting rates create con-

gestion, which is an additional channel that affects the costs of competition and thus firm sorting.
33Introducing mobility of the unemployed (as opposed to the employed) preserves the structure of our model. Moreover,

employed workers are less mobile empirically: ∼90% are hired from within a 100 km radius around the firm, where we assess
the workers’ location based on the last employer’s location.

34Importantly, in the estimated model positive firm sorting is also optimal if δ is held constant in ℓ.
35Note that under positive sorting, each ℓ is chosen by a single p, where we assume that for each p, there is a continuum

of firms i s.t. 0 ≤ i ≤ q(p) with Lebesgue measure (i.e., a continuum of mass Q′(p) = q(p)). In equilibrium p = µ(ℓ), so the
mass of firms in ℓ is Q′(µ(ℓ)) = q(µ(ℓ))µ′(ℓ). Combined with the fact that in any ℓ the measure of firms equals the measure of
vacancies, we have V(ℓ) = q(µ(ℓ))µ′(ℓ) = r(ℓ), where the mass of vacancies per unit of land in ℓ is one, i.e., V(ℓ)/r(ℓ) = 1.
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The residential housing market—a second source of congestion—features exogenous supply,

h(ℓ), in each location. Workers have Cobb-Douglas preferences over the final good and housing.

We denote the share of income that is spent on housing (the final good) by ω (1−ω). The income

of employed workers is wage w(y, ℓ) and that of unemployed workers is benefit wU (ℓ), financed via

taxes on homeowners’ income, τ .36 Further, the government budget needs to balance, τd(ℓ)h(ℓ) =

wU (ℓ)u(ℓ)L(ℓ), where d(ℓ) is the housing price in ℓ. It adjusts to clear the housing market,

balancing housing demand from unemployed and employed workers with housing supply h(ℓ).

The population size in each ℓ, L(ℓ), is pinned down by the fact that in equilibrium, workers

must be indifferent between any two locations—i.e., the value of search is equalized across space,

V U (ℓ′) = V U (ℓ′′) ∀ℓ′ ̸= ℓ′′,

where V U (ℓ), compared with (1) in the baseline model, reflects the fact that high local house

prices, d(ℓ), low job-finding rates, λE(ℓ), and high separation rates, δ(ℓ), render job search in lo-

cation ℓ less attractive. In contrast, favorable local amenities, B(ℓ), render it more attractive:

ρV U (ℓ) = B(ℓ)d(ℓ)−ω

(
z(y,A(ℓ)) + λE(ℓ)

[ ∫ w(ℓ)

z(y,A(ℓ))

1− Fℓ(t)

δ(ℓ) + λE(ℓ)(1− Fℓ(t))
dt

])
. (21)

If location ℓ′, for instance, has a better wage distribution than location ℓ′′ (causing a temporary

imbalance V U (ℓ′) > V U (ℓ′′)), workers will move into ℓ′. This puts downward pressure on market

tightness (and thus workers’ meeting rates) and upward pressure on housing prices in ℓ′ until the

difference in the locations’ attractiveness is arbitraged away.

Importantly, despite these additions to the model, conditions similar to those in our baseline

model guarantee the positive sorting of firms to locations; see Proposition A2 (Appendix B). The

value that determines firms’ location choices, J(p, ℓ), is analogous to the baseline model with

one key difference: Meeting rates are now endogenous. As a consequence, local competition has

two components. It depends not only on local firm composition, Γℓ (as before), but also on local

labor market congestion, captured by (λE(ℓ), λF (ℓ)). Both components now affect how the firm

size elasticity in (13) varies across space.

Functional Forms. As for local labor markets, we assume that worker-firm meetings are based

on a Cobb-Douglas matching function M(V(ℓ),U(ℓ)) = A
√
V(ℓ)U(ℓ), where A is the overall

36The indirect utility of unemployed workers from consuming the final good and housing is given by wU (ℓ)/d(ℓ)ω, where d(ℓ)
is the housing price in ℓ. Thus, the flow utility of unemployed workers is given by b(ℓ) = B(ℓ)wU (ℓ)/d(ℓ)ω + b̃(ℓ), where amenity
B(ℓ) scales the consumption utility. We interpret b̃ as a non-monetary (possibly negative) utility component that stems from
stigma. In practice, function b̃ gives us flexibility to satisfy Assumption 1, so that wR(ℓ) = z(y,A(ℓ)) for all ℓ.
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matching efficiency. As far as production is concerned, we assume that production function z is

multiplicative and that the ex post productivity distribution is Pareto with tail parameter 1/p:37

z(y,A(ℓ)) = yA(ℓ) and Γ(y | p) = 1− y
− 1

p .

Based on this Pareto specification, firms with ex ante higher firm productivity p draw their ex

post productivity y from a stochastically better distribution, in line with our theory.

6.2 Identification

Our model is parameterized by a location ranking [ℓ, ℓ], local TFP A(ℓ), local amenities B(ℓ),

local separation rates δ(ℓ), labor market parameters (κ,A), and parameters of the housing market

(ω, τ, h(ℓ)). We must also identify the extent of spatial firm sorting, captured by µ(ℓ) (which in

equilibrium equals p, the (inverse) Pareto tail of ℓ’s productivity distribution).38

The key step in our identification strategy is separating the effect of firm sorting µ(ℓ) from local

productivity A(ℓ). Intuitively, are locations prosperous because of high fundamental productivity

or because of an advantageous firm composition? Our model allows us to separately identify µ(ℓ)

andA(ℓ) using the average local labor share LS(ℓ) (Corollary 1) and firm value added, E[z(y,A(ℓ))|ℓ],

LS(ℓ) = 1− µ(ℓ) (22)

E[z(y,A(ℓ))|ℓ] = A(ℓ)(1− µ(ℓ))−1, (23)

where the expectation is taken over Γℓ. Variation in local labor shares across space LS(·) thus

identifies firm sorting µ(·). Conditional on local firm composition µ(ℓ), location productivity

A(ℓ) can then be identified from average local value added: The spatial variation in value added

that is not accounted for by firm sorting must be driven by differences in local TFP.

To identify the parameters of the labor market, we exploit information on job-finding rates and

local unemployment. First, the relative matching efficiency of employed workers κ is identified

from their job-finding rate, relative to that of unemployed workers. Second, we can identify the

local job-separation rate, δ(ℓ), using the steady-state formula for unemployment, as well as data

on local unemployment and job-finding rates:

δ(ℓ) = λU (ℓ)
u(ℓ)

1− u(ℓ)
. (24)

Finally, the overall matching efficiency, A, is identified from a mix of the job-finding rate of the

unemployed, λU (ℓ), the job-destruction rate, δ(ℓ), and the average firm size, l(ℓ), in any ℓ,

A =

√
λU (ℓ)(δ(ℓ) + κλU (ℓ))l(ℓ). (25)

37Note that we normalize the scale parameter, y = 1.
38Given matching function µ, we can identify Q using µ(ℓ) = Q−1(R(ℓ)) (where we assume R is given; see below).
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To identify the parameters of the housing market, we use the expenditure share of residential

housing to pin down ω and the replacement rate of the unemployed to obtain tax rate τ for

residential homeowners. And based on observed house prices—along with the government budget

constraint and housing market clearing—we can infer housing supply h(ℓ).

Last, we identify the amenity schedule B(ℓ) using the indifference condition whereby workers’

value of search is equalized across space, given by (21) when imposing the normalization ρV U = 1.

We now summarize this discussion:

Proposition 6 (Identification). Under the assumed functional forms (summarized in Assumption

A1, Appendix E), the model is identified.

We provide more details on the presented derivations in the proof; see Appendix E.

6.3 Estimation: Strategy and Results

For estimation, we rely on regional data from the official records of the German Federal Statistical

Office, which we aggregate at commuting-zone level; see Appendix C.1 for details. Specifically, we

use employment, value added, and labor compensation, as well as unemployment rates, number

of establishments, and GDP. In turn, for model validation, we use worker- and firm-level data

from the FDZ as for our empirical analysis in Section 5. The time unit is 1 month.

The identification argument provides us with a concrete estimation protocol that we follow

closely. Our implementation proceeds in seven steps. First, as in Section 5, we rank the 257 CZs

based on their log GDP per capita. Local log GDP per capita will be our discretized support

{ℓ1, ℓ2, ..., ℓ257} of the model’s land distribution R. We identify R from the number of firms in

each CZ, i.e., we assign to each ℓj , j ∈ {1, 2, ..., 257} a probability mass r(ℓj) equal to its share

of firms in Germany. Examples of the highest ranked CZs are Munich and Wolfsburg (in West

Germany); among the lowest ranked, we have Goerlitz (East) and Mansfeld-Südharz (rural East).

Second, we use (22) to obtain µ(ℓ) from the observed labor share in ℓ. Because our model is

stylized (e.g., it lacks noise in the firm-location matching process), we smooth any measurement

error in the data moments before feeding them into the model. Specifically, we linearly fit each

variable we target in estimation as a function of ℓ. Since the labor share is decreasing in ℓ

(Figure 4, top left), we obtain an increasing matching function µ (top right).39 This implies

positive sorting between firms and locations.

Third, we obtain the overall matching efficiency, A, from the Germany-wide observed matching

rate, separation rate, and average firm size, using (25) (see Table A.3, Appendix F). To obtain
39The size of the dots in Figure 4 is proportional to the size of the CZ, as measured by its number of establishments.
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the relative matching efficiency of employed workers κ, we take into account only those EE moves

in the data that are associated with wage gains (59.7%) and set κ = 0.597 · λE
λU

; see Table A.3.

Fourth, to pin down the local separation rates from (24), we use local unemployment and

job-finding rates. To avoid using noisy CZ-specific job-finding rates from a small sample in the

FDZ data, we infer the (endogenous) job finding rate λU (ℓ) in each ℓ from the average firm

size l(ℓ) provided by the German Federal Statistical Office (Figure 4, second row, left).40 We

then compute λE(ℓ) = κλU (ℓ) and λF (ℓ) = λU (ℓ)/θ(ℓ). Since average firm size is increasing

in ℓ, we obtain a slightly increasing λU (·), which implies higher meeting rates for workers and

lower meeting rates for firms in high-ℓ locations (second row, right). Furthermore, an observed

unemployment rate that is decreasing in ℓ (Figure 4, third row, left), along with a fairly stable job-

finding rate, translates into job-separation rates that are lower in richer places (third row, right).

Fifth, we estimate location TFP based on the average value added per worker across locations

using (23), except that we weigh each firm type by its employment.41 Since value added per

worker is strongly increasing in ℓ (Figure 4, bottom left), we obtain an increasing A-schedule,

even after controlling for firm sorting through µ (Figure 4, bottom right). To better understand

the determinants of local TFP, we project the estimated A’s on several location factors. We find

that high local TFP is associated with a low corporate tax rate, the quality of infrastructure,

and especially the skills of local workers; see Table A.4, Appendix F. This is consistent with our

implicit assumption in the baseline model that spatial worker heterogeneity shapes A(ℓ) and is

therefore taken into account by firms when making their location choices.

Sixth, to pin down the parameters that govern residential housing markets, we target the

average rent-to-income ratio of main tenant households (and obtain ω = 0.272) and an average

replacement rate of 60%, which implies a proportional tax rate on residential landlords of τ =

0.164 (Table A.3, Appendix F). Finally, we pin down local housing supply h(ℓ) using observed

location-specific rental rates d(ℓ); see Figure A.2 in Appendix F.

Last, given (µ(ℓ), A(ℓ), λE(ℓ), δ(ℓ), d(ℓ)) for each ℓ, we use (21) to back out amenity schedule

B, which ensures that unemployed workers are indifferent between all locations. The left panel of

Figure A.2 (Appendix F) shows that amenities are decreasing in the location index. Thus, even

though residential housing is more expensive in high-ℓ places, this force is not strong enough to

dissuade workers from settling in those locations with high TFP and better firms, which calls for

40Solving (25) for λU (ℓ) while taking δ(ℓ) = λU (ℓ)u(ℓ)/(1− u(ℓ)) into account gives λU (ℓ) = A
(
l(ℓ) ·

(
κ+ u(ℓ)

1−u(ℓ)

))− 1
2 .

41Instead of applying (23), we apply its weighted version A(ℓ) = Egℓ [z(y,A(ℓ))|ℓ]/
( ∫

ygℓ (y) dy
)
, where we observe average

value added per employee, Egℓ [z(y,A(ℓ))|ℓ], in the data; and where we compute
∫
ygℓ (y) dy in the model, taking density gℓ

based on (12) into account, which depends on (µ(ℓ), λU (ℓ), δ(ℓ))—all objects that we pinned down above.
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particularly low amenities in these places.

Importantly, while we stipulate that the empirical firm sorting can be captured by a function µ,

at no point of the estimation do we impose PAM. Given the estimation output, we verify that the

value of firm p of settling in ℓ, J(ℓ, p), is supermodular in (p, ℓ) (in line with Proposition 1), which

verifies that the positive sorting of firms into locations is indeed optimal in the estimated model.

6.4 Model Validation

Given our estimation approach, we fit the targeted data series of local labor shares, firm size,

unemployment rates, and value added per worker by construction (Figure 4, left column). Im-

portantly, despite its parsimony, our model also performs reasonably well regarding several non-

targeted features of the data that are related to worker inequality and beyond.

In Figure 5, we confront our model with the findings from our empirical analysis (Section 5).

In the left panel, we display the average local wage across space. Because our model perfectly

matches value added per capita across ℓ, it is expected that it also fits spatial differences in average

wages. Second, and more importantly, our model captures quite well both spatial differences in

wage inequality within locations and spatial wage ladder heterogeneity. In the middle panel of

Figure 5, we display local 90-10 log wage gaps across space, which is the model counterpart of

the top right panel of Figure 3. Although our model underestimates the level of within-location

inequality, it almost perfectly rationalizes its spatial variation. The right panel shows that our

model also replicates the heterogeneity in EE wage growth across space, generated by steeper

wage ladders in high-ℓ locations—the theoretical counterpart to the bottom right panel of Figure

3. We overestimate the level of EE wage growth, which may not be surprising since our model

features only positive wage changes due to EE moves while the data also contains a substantial

share of negative wage growth. Reassuringly, however, we closely match the variation in EE

returns across space.

We further validate the model along the following dimensions (see Appendix F). First, we

show that our model matches relatively well the decreasing rate of job loss, δ(·), as well as the

flat EE transition rate, P(EE|·), and UE transition rate, λU (·) (Figure A.3). Second, our model

replicates the fact that employment is more concentrated among top firms in rich labor markets.

Specifically, in both the data and the model, the employment share among the largest 25% of

firms is increasing in ℓ (Figure A.4, left panel). Finally, our model is consistent with the fact

that commercial land prices are higher in rich labor markets, even though the increase is more

pronounced in the data (Figure A.4, right panel).
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Figure 4: Model Fit of Targeted Moments (left) and Estimated Parameters (right)
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Figure 5: Model Fit: Non-Targeted Moments

Notes: Data sources: The left and middle panels are based on firm-level wages of full-time employees from BHP; and the
right panel is based on worker-level wages from the LIAB. The right panel (data) shows βEE

ℓ from regression (20). These
local statistics are weighted by the number of firms (left and middle panel) and the number of EE moves within the CZ (right
panel), indicated by different marker sizes. 95% confidence intervals are displayed in gray.

7 Spatial Firm Sorting: Quantitative Implications

We now use our estimated model to quantify the role of spatial firm sorting for local labor

shares, wage ladders, and spatial wage disparities. To do so, we consider a counterfactual in

which we allocate firms randomly across locations and let the equilibrium play out. Hence,

workers reallocate across space, job-finding rates adjust via local market tightness, and local

wage schedules change. Appendix SA.6.1 contains technical details on this exercise.42 We then

highlight the importance of OJS and endogenous firm location choices for our conclusions.

7.1 Implications for Local Labor Shares and Spatial Wage Inequality

Our model predicts that positive firm sorting has distinct implications for productive locations:

It increases local monopsony power and lowers their labor shares; and it steepens their local job

ladders, thereby contributing to higher and more dispersed wages. We now assess the quantitative

importance of these implications.

Local Labor Shares. Consider first the effect of firm sorting on local labor shares. In our

baseline estimation, rich labor markets have lower labor shares because they have a larger mass

of productive, “superstar” firms with low labor shares. In contrast, in the absence of sorting, firm

distributions are identical in all locations and local labor shares are essentially equalized. This

is illustrated in Figure 6. We display the local labor share as a function of location productivity

index ℓ both for the baseline allocation with positive sorting (solid line) and the no-sorting coun-

terfactual (dashed line), which equalizes local labor market power across space.43 The implied
42Throughout, we maintain Assumption 1. As a result, the economy-wide firm distribution stays the same as in the base-

line model. In Section 8, we explicitly allow for firm selection as robustness.
43Note that, in the absence of firm sorting, labor shares still vary slightly across space since each local productivity distribution

becomes a mixture of Pareto distributions, which itself is not Pareto. Hence, Corollary 1 does not directly apply and differences
in the efficiency of OJS, φE(ℓ), across ℓ impact local labor shares.

36



Figure 6: The Effect of Spatial Firm Sorting on Local Labor Shares
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Notes: The figure plots the local labor share in each location ℓ under the baseline estimation (solid line) and the no-sorting
counterfactual (dashed line).

changes in local labor shares are quantitatively sizable. In the absence of firm sorting, labor

shares would fall by around four percentage points in the least productive labor markets and in-

crease by the same amount in the most productive locations. At the same time, the economy-wide

labor share would not be affected and remains at 0.67.

Our theory sheds light on why local labor shares are equalized when firm sorting is absent;

see decomposition (15). While the absence of sorting still results in lower firm-level labor shares

for productive firms, it causes significant shifts in the local employment composition: Equalizing

firm productivity distributions across space shifts employment towards less productive, high

labor-share firms in rich labor markets and towards more productive, low labor-share firms in

poor ones. As a result ∂G̃ℓ(y)/∂ℓ ≈ 0, which has a levelling effect on spatial labor share gaps.44

Wage Inequality Within and Across Locations. We now turn to the implications of firm

sorting for the distribution of wages both within and across labor markets. We begin with the

implications of firm sorting for wage inequality within locations, which, as before, we measure

by the 90-10 difference in local log wages. The left panel of Figure 7 shows how within-location

inequality would change if firm sorting were removed: Wage inequality would decline by almost 0.1

log points in productive labor markets and increase by 0.06 log points in unproductive locations.

This shows that firm sorting is a quantitatively important determinant of the spatial variation

in within-location inequality. Indeed, Table 2 (left panel) shows that firm sorting accounts for

40% of the higher inequality within rich labor markets: Whereas the difference in within-location

inequality between rich and the poor German labor markets (i.e., between locations in the top

and bottom quartiles of the distribution of local GDP per capita) is 0.2 log points in our baseline
44The lack of sorting (and thus the same local firm productivity distribution everywhere) also ensures ∂2Ls(y, ℓ)/∂y∂ℓ ≈ 0.
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Figure 7: The Effect of Spatial Firm Sorting on Spatial Wage Inequality
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Notes: The left panel shows the percentage point change in the 90-10 difference in log wages within locations if firm sorting
is abolished. The right panel shows the percentage change in average local wages if firm sorting is abolished.

model with sorting, this gap would drop to 0.12 log points in the absence of it. While differences

in local TFP A do not affect the spatial gap in within-location inequality (see (17)), spatial

heterogeneity in job-destruction rates δ and job-finding rates λE does impact local wage ladders

and account for the remaining spatial variation in our quantitative model.

In the right panel of Figure 7, we show the link between firm sorting and wage inequality across

locations by plotting the change in average local wages in the absence of sorting relative to the

baseline equilibrium. Firm sorting is a quantitatively important determinant of spatial differences:

Without sorting, wages would be 6% lower in the richest labor markets and around 4% higher in

the poorest locations. Hence, unproductive labor markets are not only disadvantaged because of

poor economic fundamentals but also because workers lack access to the most productive firms.

In the right panel of Table 2, we decompose the observed wage premium between poor and rich

locations. In our no-sorting counterfactual, this wage premium drops from 40% to 34%. Firm

sorting thus accounts for 6/40 = 15% of the observed spatial wage gap.

To put the quantitative role of sorting into perspective, we can also shut down spatial differ-

ences in local TFP and set A = E[A(ℓ)] in all locations while keeping firm sorting at its baseline

level. Doing so would cut the spatial wage gap in half—that is, reduce it to 21%. Hence, the

effect of firm sorting on spatial inequality is about one-third as large as the effect of differences

in location TFP. As we show in Section 8, where we discuss alternative model assumptions, we

view the effect of firm sorting on the spatial wage premium reported here as a lower bound.

To better understand why changes in firm sorting affect wage distributions across space, we

draw on our theoretical analysis on the drivers of within-location inequality, captured by (17),

and of across-location inequality, given by (18). There we have shown that firm sorting affects
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Table 2: The Effect of Spatial Firm Sorting on Spatial Wage Inequality

Within-Location Inequality Across-Location Inequality
(90-10 Difference in log Wages) (Spatial Wage Premium)

Baseline No Sorting Contribution of Sorting Baseline No Sorting Contribution of Sorting
0.20 0.12 40% 40% 34% 15%

Notes: Columns 1-3 pertain to the spatial gap in the 90-10 difference of log wages within labor markets, where we first
assess the gap between the 90th and 10th quantiles of log wages in each location and then compute the difference of this
measure across poor and rich locations. Column 1 (2) reports this statistic for the baseline model (for the counterfactual
equilibrium without sorting). Column 3 reports the contribution of sorting as the percentage difference between columns
1 and 2. Columns 4-6 report the analogue for the spatial wage premium between rich and poor locations. Throughout,
we define poor (rich) locations as the bottom (top) quartile of commuting zones ranked by their local GDP per capita.

within- and across-location inequality through its effect on the steepness of local wage ladders.

Figure 8 illustrates this point by comparing two locations at opposite ends of the spectrum

of the local GDP per capita distribution, Wolfsburg at the top and Mansfeld-Südharz at the

bottom. The left panel stresses that random matching of firms to locations reduces wage ladder

differences across space. The random allocation improves firm productivity in bottom locations

and deteriorates it in top ones. More specifically, the firm productivity y—and therefore the

wage—associated with any given productivity rank R > 0 declines in rich labor markets and

increases in poor labor markets. As a consequence, while in our baseline estimation the wage

ladder was considerably steeper in the top location (yellow solid) compared with the bottom

location (red solid), this differential steepness shrinks when firm sorting is absent (dashed lines).

These differential changes in local wage ladders are also reflected in changes of local returns

from EE moves. The right panel of Figure 8 shows the effect of firm sorting on EE returns. Rela-

tive to our baseline estimation (solid line), spatial differences in EE returns are substantially lower

without sorting (dashed line). For our two locations, Wolfsburg and Mansfeld-Südharz, shown as

red and yellow circles, the difference in EE returns falls by around 75%. This analysis suggests

that firms sorting is a central determinant of the observed spatial variation in wage ladders and

EE wage growth and—through this channel—of the variation in local wage distributions.

7.2 The Role of On-the-Job Search

In our theory, firm sorting affects spatial inequality by shaping the returns to on-the-job search—

and the associated wage ladders—within spatially segmented labor markets. This suggests that

firm sorting would have smaller effects on local wage distributions if OJS was less pronounced.

To illustrate this complementarity between OJS and firm sorting, we reduce the importance

of OJS by lowering the relative matching efficiency of employed workers, κ. To this end, we rees-

timate our model for a range of different κ by targeting the same moments as in our baseline esti-

mation except for the relative job-finding rate of employed workers that used to pin down κ. We
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Figure 8: No-Sorting Counterfactual: Wage Ladders and EE Returns
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Notes: The left panel shows the local wage ladders in Wolfsburg (WB, yellow) and Mansfeld-Südharz (MS, red) with and
without sorting. The right panel reports wage growth due to EE moves with sorting (solid line) and without sorting (dashed
line) as a function of ℓ. WB and MS are denoted by yellow and red circles, which are proportional to their relative size.

therefore still match local labor shares (which leaves spatial differences in firm productivity, cap-

tured by Γℓ, unaltered), local value added per worker, unemployment rates, and average firm size

by appropriate choices of location TFP, A(ℓ), separation rates, δ(ℓ), and job-finding rates, λU (ℓ).

By extension, we also match local wage levels and the spatial wage premium across ℓ.

By contrast, a key untargeted moment affected by lower OJS is within-location wage inequal-

ity and its variation across space. In our baseline estimation, within-location inequality is 0.2 log

points higher in the 25% richest relative to the 25% poorest labor markets, resembling the spatial

gap in the data. Lowering OJS by lowering κ not only reduces the level of within-location wage dis-

persion everywhere; it especially reduces spatial differences therein. This is illustrated in the left

panel of Figure 9: We see a gradual flattening of spatial differences in 90-10 log wage dispersion

when we go from our baseline κ (solid line), to a lower κ (circles), and finally to κ = 0 (diamonds),

which completely eliminates differences in local wage inequality. When there is no OJS, all firms

pay the local reservation wage, which makes local wage ladders collapse irrespective of the local

firm composition—a spatial version of the Diamond paradox (Diamond, 1971).

The reason for these differential changes in within-location inequality across space is the

interaction between OJS and firm sorting. The right panel of Figure 9 shows the %-contribution

of firm sorting to spatial disparities in our central outcomes for varying degrees of κ and thus

OJS. To obtain these numbers we use our reestimated models for each κ and run the no-sorting

counterfactual from Section 7.1. We find that firm sorting contributes significantly less to the

spatial gap in within-region inequality when OJS is muted (purple markers): Its contribution to

spatial differences in within-location inequality drops from 40% at the baseline κ to 25% when
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Figure 9: The Importance of On-The-Job Search and its Interaction with Firm Sorting
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Notes: The left panel shows the local 90-10 log wage difference across ℓ under three levels of relative matching efficiency
for employed workers, κ, where we reestimate the model for each κ. The right panel shows the %-contribution of sorting to
spatial gaps in local labor shares (yellow, right axis), within-location wage inequality (purple, left axis), and across-location
wage inequality (green, left axis) between poor and rich labor markets. We define poor (rich) locations using local GDP per
capita; see Table 2. We indicate our baseline estimate κ = 0.253 with a dashed vertical line in the right panel.

κ is close to zero. In terms of the corresponding poaching share—a proxy for the magnitude of

OJS in the economy—this implies that if the poaching share was 10% lower, firm sorting would

contribute about 8% less to spatial differences in local wage dispersion.45 Intuitively, local firm

productivity affects spatial wage inequality by molding local wage ladders. If workers were to

climb their local wage ladder at a slower pace, spatial wage ladder heterogeneity would be less

significant and the effect of firm sorting on spatial wage disparities would be mitigated.

This mechanism does not only lead to a lower contribution of firm sorting to spatial differences

in within-location inequality; it also reduces the contribution of firm sorting to between-location

differences in wage levels (green markers). In our baseline estimation, firm sorting accounts for

about 15% of the spatial wage premium. In the limiting case of no OJS (κ = 0), firm sorting

explains none of the spatial wage premium, which is instead entirely driven by local TFP, A(ℓ).46

In sum, firm sorting and OJS are complementary in nature. Firm sorting affects spatial wage

inequality by shaping local wage ladders. In turn, OJS determines the fluidity of local labor

markets and hence the incentives of “superstar” firms to bid up wages in order to attract workers.

For firm sorting to be quantitatively important for spatial inequality, local labor markets have to

be sufficiently dynamic. Our analysis suggests that this is the case in Germany.

7.3 The Role of Endogenous Firm Sorting

In our theory, firm sorting is determined in equilibrium. Explicitly modelling firms’ location

choices is not only important for understanding whether positive sorting is consistent with optimal
45A firm’s poaching share is defined as the ratio of EE inflows relative to all (EE plus UE) inflows.
46For completeness, Figure 9 also highlights the fact that firm sorting explains the same share (100%) of the spatial variation

in labor shares (yellow markers), irrespective of the level of OJS, simply because local labor shares only depend on µ(ℓ) here.
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firm behavior, but is essential for analyzing the effects of place-based policies. Consider, for

example, a change in regional subsidies. Such a policy not only affects the targeted locations, but

also impacts non-targeted ones through the re-sorting of firms. To make this point, we conduct a

stylized exercise inspired by the German initiative for the improvement of local economies (GRW),

which since 1969 provides discretionary investment grants to economically disadvantaged regions.

Since GRW covers a wide range of CZs during our sample period, its impact is reflected in the

estimated local productivity, A(ℓ).

Consider a hypothetical reduction of these subsidies in some structurally weak CZs (Appendix

SA.6.2 gives details). For illustration, we decrease local TFP A(ℓ) by 10% in locations {ℓ5, ..., ℓ33},

which all received GRW subsidies during the time period of our study, and keep TFP in all

remaining localities unchanged (see Figure 10, left panel).

By altering the relative attractiveness of local labor markets, this policy affects firm’s lo-

cation choices (Figure 10, middle panel). The composition of firms worsens in the “treated”

locations {ℓ5, ..., ℓ33}, where average firm productivity declines by 0.13%, and improves in the

originally least developed, “untreated” CZs, {ℓ1, ..., ℓ4}, where firm productivity increases by 2.1%.

The right panel of Figure 10 displays the distributional implications of this policy. Consider

first locations {ℓ1, ..., ℓ4}, which indirectly benefit from the policy change because they are able

to attract better firms: Both average wages (shown in green) and wage dispersion (purple)

increase due to the change in firm sorting. By contrast, local labor shares decline (yellow). The

equilibrium impacts on the treated locations {ℓ5, ..., ℓ33} are subtle. The direct productivity effect

of this policy reduces local wages but the overall decline is less than the subsidy reduction of

10%. The reason is that, like productive firms, workers also leave these labor markets. This

increases the meeting rates of the remaining workers, which counteracts the initial wage decline

and increases local wage dispersion. In turn, local labor shares increase due to the presence of

less productive firms with low monopsony power.

These pattern highlight the subtle effects of place-based policies on treated and non-treated

areas once equilibrium effects due to endogenous firm (re)-sorting are taken into account. In fact,

neglecting the response of firm sorting to the change in policy would lead to wrong conclusions,

especially in the untreated regions that are only indirectly affected by the influx of more produc-

tive firms: Keeping firm sorting fixed would leave their local labor shares, wage dispersion and

average wages essentially unchanged—at odds with the equilibrium responses our model predicts.
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Figure 10: The Impact of Place-Based Policies on Local TFP, Firm Sorting and Spatial Inequality
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Notes: The left panel shows changes in local TFP A(ℓ) induced by the counterfactual policy. The middle panel shows the
percentage changes of average firm productivity across ℓ induced by the counterfactual. The right panel plots percentage
changes in local labor share (yellow), percentage changes in local average log wages (green), and changes in the local 90-10
log wage difference (purple) across ℓ.

8 Robustness

Our quantitative results are robust to a variety of different measurement and modeling choices.

For all of these alternatives, we re-estimate our model and perform the no-sorting counterfactual,

which allows us to compare the role of firm sorting in spatial inequality to our baseline model.

We conclude that our baseline estimation provides a lower bound of the role of sorting in spatial

inequality. Table 3 summarizes the results and focuses on counterfactual wage outcomes since,

in all robustness checks, the effect of firm sorting on local labor shares is nearly identical to our

baseline estimation;47 Appendix SA.7 contains details.

Measurement. A first concern may be that different industries operate under different tech-

nologies with different labor and capital intensities. If industries sort across space, this could

drive spatial labor share differences even in the absence of firm sorting. We address this concern

in two ways. First, we re-estimate our model after controlling for the local industry composition

in the labor share data. As shown in column 2 of Table 3, focusing on the within-industry vari-

ation, if anything, amplifies the role of sorting: Sorting now accounts for, respectively, 48% and

26% of inequality within and across locations.48 Second, our model may be a better description

of tradable industries, where the local costumer base—a feature absent from our model—is un-

likely to contribute to the attractiveness of a location. We therefore repeat our estimation using

data on the manufacturing sector only. As shown in column 3 of Table 3, doing so strengthens

the impact of firm sorting on spatial wage disparities. The reason is that there is more regional
47Across all robustness checks, the absence of firm sorting implies that local labor shares become nearly identical across space

(as in Figure 6), which suggests that firm sorting is a robust driver behind differential local labor market power.
48This is consistent with our regression analysis in Table 1, which revealed that the within-industry relationship between

labor shares and log GDP per capita is steeper than the unconditional one.
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variation in local labor shares within manufacturing. As a consequence, our estimation infers

stronger spatial firm sorting. See Appendix SA.7.1 for details.

Further, in our baseline estimation we relied on regional statistics from the German Federal

Statistical Office. Since these are official records, we view them as more reliable than any regional

aggregation we could perform on a smaller sample of firms in the FDZ data. As a consequence,

our analysis draws from two different data sources, since the worker-level analysis (e.g., for model

validation) requires individual-level data from the FDZ. For robustness, we therefore also perform

our estimation using only data from the FDZ (Appendix SA.7.2). As seen in column 4, this yields

a more prominent role of firm sorting in spatial inequality.

Alternative Model Assumptions. We also probed the robustness of our results with respect

to two model dimensions.

First, so far we have maintained Assumption 1, i.e., all firm types y ∈ [y, y] are active in each

market and the least productive firm makes zero profit. This assumption, ensured by a flexible

b-schedule, ruled out spatial differences in firm selection at the lower end of local productivity

distributions. In Appendix SA.7.3, we implement a version of our model without this assumption.

In that model, each labor market has an endogenous productivity cutoff y(ℓ), and all firms with

y < y(ℓ) choose to exit. In the estimated model, exit threshold y(ℓ) is increasing in ℓ, which

implies that firm sorting is stronger than in our baseline estimation. Thus, allowing for this form

of firm selection amplifies the impact of sorting on inequality: Sorting now accounts for 57% of

differences in within-location inequality and 22% of spatial wage gaps (column 5 of Table 3).

Second, our estimation was based on the simplifying assumption of full mobility of unemployed

workers. As an alternative, we estimate a model with location preference shocks that hamper

labor mobility. We discipline workers’ propensity to migrate by targeting a spatial labor supply

elasticity that is consistent with the empirical literature; see Appendix SA.7.4. Column 6 shows

that this model with imperfect worker mobility does not change our quantitative conclusions

about the role of sorting in within- and across-location inequality.

Table 3: The Effect of Spatial Firm Sorting and Spatial Wage Inequality: Robustness
Baseline Measurement Choices Model Assumptions

Within Only FDZ Selection Imperfect
Industry Manufac. Data Mobility

90-10 Log Wage Difference 40 % 48 % 52 % 66 % 57 % 39 %
Spatial Wag Premium 15 % 26 % 22 % 34 % 22 % 16 %

Notes: This table reports the contribution of firm sorting to the spatial gap in the 90-10 difference of log
wages within local labor markets (row 1) and average local wages (row 2) for various measurement choices and
specifications of our model. For both measures, we compare ‘poor’ (bottom quartile of CZs in terms of GDPpc)
and ‘rich’ (top quartile) locations.
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9 Conclusion

Why do high-wage locations feature more wage dispersion and lower labor shares? In this paper,

we propose a unifying theory based on spatial firm sorting that rationalizes these novel facts.

We develop a parsimonious model, in which heterogeneous firms first decide where to produce,

and then compete in a frictional local labor market that features on-the-job search. Because of

search frictions, firms have monopsony power: They internalize that they poach more workers

if they post higher wages. This leads to a local wage ladder with more productive firms paying

more. At the same time, due to monopsony power, firms pay wages below their marginal product

and differ in their wage markdowns. Importantly, the extent of local labor market power and the

shape of the local wage ladder depend on the local distribution of firm productivity, and therefore

on how firms sort across space.

We show analytically that positive firm sorting—i.e., an allocation in which productive firms

settle in productive locations—emerges as the unique equilibrium if firm and location productivity

are sufficient complements or labor market frictions are sufficiently large. Our theory implies

that positive sorting steepens the local wage ladder, raises the returns from an employment-to-

employment transition, and concentrates employment among top, high-wage firms in productive

locations. Positive sorting therefore amplifies spatial disparities not only in average wages but,

more notably, in wage dispersion. At the same time, this concentration of highly productive

firms—who have a high degree of monopsony power and low labor shares—leads to a low average

labor share in their location.

Using administrative data from Germany, we first provide empirical support for these pre-

dictions. We then estimate our model to identify the degree of firm sorting in the data and

quantify its role in shaping local labor market power as well as local wage distributions. Our

estimated model shows that firm sorting is quantitatively important: Firm sorting can explain

the lower local labor shares in high-wage locations, and it accounts for 40% of their increased

wage dispersion. In spatial firm sorting, we thus highlight a novel source of disparities in local

labor market outcomes.
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Appendix

A Baseline Model: Proofs

Mostly for expositional reasons, we maintain the assumption ρ = 0 (as stated in footnote 7).

A.1 Proof of Proposition 1

We proceed in three steps. In Step 1, we show that under the premise of the proposition,

an assignment with positive sorting is among the optimal ones. In Step 2, we show that any

pure assignment that is not increasing cannot satisfy firm optimality. In Step 3, we show that

given our assumptions on firm productivity and land distributions, there exists a unique optimal

assignment that is strictly increasing and thus satisfies positive sorting. Taken together, any

equilibrium features positive sorting.

Step 1. An assignment with positive sorting satisfies firms’ optimality. To this end, we show

that, if firms conjecture that there is positive sorting, then value J(p, ℓ) is indeed globally super-

modular in (p, ℓ) under the premise, inducing positive sorting based on firms’ optimal choices.

We use J̃(y, ℓ) from (4), wage function (5) (and integration by parts), to obtain J̄(p, ℓ) as:

J(p, ℓ) =

∫
J̃(y, ℓ)dΓ(y|p)− k(ℓ)

= δλF

∫ y

y

∂z(t,A(ℓ))
∂y

[δ + λE(1− Γℓ(t))]
2dtΓ(y|p)

∣∣∣∣y
y

−

∫ y

y

∂z(y,A(ℓ))
∂y

[δ + λE(1− Γℓ(y))]
2Γ(y|p)dy

− k(ℓ)

= δλF

∫ y

y

∂z(t,A(ℓ))
∂y

[δ + λE(1− Γℓ(t))]
2dt+

∫ y

y

∂z(y,A(ℓ))
∂y

[δ + λE(1− Γℓ(y))]
2 (−Γ(y|p))dy

− k(ℓ)

= δλF

∫ y

y

∂z(y,A(ℓ))
∂y

[δ + λE(1− Γℓ(y))]
2 (1− Γ(y|p))dy − k(ℓ) (A.1)

=

∫ y

y

∂z(y,A(ℓ))

∂y
l(y, ℓ)(1− Γ(y|p))dy − k(ℓ).

To assess the conditions under which J(p, ℓ) is supermodular in (p, ℓ), which is sufficient for

the single-crossing property of J(p, ℓ) in (p, ℓ), we differentiate wrt (p, ℓ):

∂2J(p, ℓ)

∂p∂ℓ
= δλF

∫ y

y

( ∂2z(y,A(ℓ))
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In order for this expression to be (strictly) positive, it suffices that the integrand is positive for

all y ∈ [y, y] and strictly so for some set of y of positive measure. In turn, for this it is sufficient

that for all (y, ℓ) (recall that we assume ∂Γ(y|p)
∂p < 0 for all y ∈ (y, y)):

∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

∂z(y,A(ℓ))
∂y

>
2λE

δ + λE(1− Γℓ(y))

(
−∂Γℓ(y)

∂ℓ

)
.

Under (the conjecture of) positive sorting, land market clearing is given by Q(µ(ℓ)) = R(ℓ);

see Appendix SA.1.5. Further, based on our assumption of strictly positive densities (r, q), this

PAM assignment is one-to-one, i.e., µ is strictly increasing, whereby the firm type p assigned

to location ℓ is p = µ(ℓ) = Q−1(R(ℓ)). Positive sorting then implies that the endogenous firm

distribution in location ℓ is given by Γℓ(y) = Γ(y|Q−1(R(ℓ))) (see also Footnote 11). Hence,
∂Γℓ(y)
∂ℓ = ∂Γ(y|Q−1(R(ℓ)))

∂p
r(ℓ)

q(µ(ℓ)) and so to guarantee supermodularity of J(p, ℓ) in (p, ℓ), we need to

ensure that

∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

∂z(y,A(ℓ))
∂y

>
2λE

δ + λE(1− Γ(y|Q−1(R(ℓ)))

(
−∂Γ(y|Q

−1(R(ℓ)))

∂p

)
r(ℓ)

q(Q−1(R(ℓ)))
, (A.3)

which is a condition in terms of primitives. To specify bounds that make this condition hold

uniformly in (ℓ, y), let

εP ≡ min
ℓ,y

∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

∂z(y,A(ℓ))
∂y

and tP ≡ max
ℓ,y

(
−∂Γ(y|Q

−1(R(ℓ)))

∂p

)
r(ℓ)

q(Q−1(R(ℓ)))
.

Note that under our assumptions and the premise of the proposition, εP exists: It is strictly

positive and bounded. In turn, tP exists (and it is also strictly positive and bounded) since

we assume that Γ(y|p) is continuously differentiable in p where both p and y are defined over

compact sets, and that cdf’s Q and R are continuously differentiable on the intervals [p, p] and

[ℓ, ℓ], respectively, with strictly positive densities (q, r).

A sufficient condition for J̄ to be supermodular in (ℓ, p) is therefore εP > 2φEtP . So, PAM is

optimal, either if the productivity gains, εP , are sufficiently large or if φE is sufficiently small.

Step 2. Any pure assignment that is not increasing cannot satisfy firm optimality. To show

this, we proceed by contradiction. That is, suppose there exists {ℓ′, ℓ′′} ∈ [ℓ, ℓ] with ℓ′ < ℓ′′ such

that the assigned firm types satisfy µ(ℓ′) > µ(ℓ′′), where µ(ℓ′) = p′′, µ(ℓ′′) = p′ and p′ < p′′, i.e.,

there exists a negatively assorted pair of agents. For this negatively assorted pair to be consistent

with the optimal choices of firms p′ and p′′, it must be that if firms conjecture this assignment
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then their objective function J(p, ℓ)− k(ℓ) satisfies decreasing differences when evaluated at this

pair, i.e., J(p′, ℓ′)+J(p′′, ℓ′′) < J(p′, ℓ′′)+J(p′′, ℓ′). Otherwise there exists a blocking pair, which

renders the assignment non-optimal. This requirement of decreasing differences translates into

the requirement that the following expression, based on (A.1), be positive:∫ y

y

 ∂z(y,A(ℓ′′))
∂y

[δ + λE(1− Γℓ′′(y))]
2 −

∂z(y,A(ℓ′))
∂y

[δ + λE(1− Γℓ′(y))]
2


︸ ︷︷ ︸

(1)

(
1− Γ(y|p′)− (1− Γ(y|p′′))

)︸ ︷︷ ︸
(2)

dy.

Note that the first term of the integrand (1) is strictly positive since: (i) ∂z(y,A(ℓ′′))
∂y > ∂z(y,A(ℓ′))

∂y

due to strict monotonicity of A and strict supermodularity of z in (y,A); and moreover, (ii)[
δ + λE(1− Γℓ′′(y))

]2
<
[
δ + λE(1− Γℓ′(y))

]2 based on the conjecture of negative sorting, which

implies that the firm productivity distribution in ℓ′′ is stochastically worse than in ℓ′. In turn,

the second term (2) is negative under our assumption on Γ. Thus, the integral is negative, i.e.,

J(p, ℓ) satisfies increasing differences when evaluated at this pair of agents, which implies that

negative sorting violates firm optimality: Any optimal assignment must be strictly increasing.

Step 3. There is a unique optimal assignment with positive sorting, given by µ(ℓ) = Q−1(R(ℓ)).

We conclude from Step 2 that, under the premise, the only conjecture about sorting that is

consistent with firm optimality is that of positive sorting; and we have shown in Step 1 that in

this case the optimal assignment will indeed be positive.

Finally, there is a unique way of matching up two one-dimensional, continuously differen-

tiable distributions (Q,R) in a positively assortative way that preserves the measures, given by

Q(µ(ℓ)) = R(ℓ) ⇔ µ(ℓ) = Q−1(R(ℓ)). We conclude that under the premise, any equilibrium

satisfies positive sorting with strictly increasing matching function, µ′(ℓ) = r(ℓ)/q(µ(ℓ)) > 0. □

Remark 1. In Step 2 of the proof of Proposition 1, the only deviation from positive sorting

we consider is that of strictly negative sorting for a set of agents. Note that since we restrict

attention to pure assignments, we do not need to consider the case of weakly negative sorting.

Remark 2. Clearly, a weaker sufficient condition for (A.2) to be positive would be based on

the entire integral, which is different from our approach in the proof of Proposition 1 in which we

aim for (more demanding) sufficient conditions that the integrand be positive for all y. Working

with the integrand proved tractable, while working with the integral did not: First, none of the

standard integral inequalities, which could have helped signing (A.2), apply; second, even when
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making functional form assumptions, the integral does not admit an explicit solution.

We give the detailed interpretation of the condition for positive sorting on the integrand (A.3)

in the text, after stating condition (13). We note that the RHS of (A.3) is equivalent to (the

negative of) the firm size elasticity in ℓ in (13) (see also (14)).

A.2 Proof of Proposition 2

We first show that a fixed point in Γℓ exists and we will do so by construction. Suppose the

conditions of Proposition 1 hold, i.e., any equilibrium features PAM of firms to locations.

We therefore consider the assignment µ(ℓ) = Q−1(R(ℓ)), which yields a unique firm distribu-

tion across locations Γℓ = Γ(y|µ(ℓ)) and a unique wage function (5). We will show that the pair

(µ, k) is a Walrasian equilibrium of the land market, where

k(ℓ) = k + δλF

∫
ℓ

ℓ

∫
y

y

∂

(
∂z(y,A(ℓ̂))

∂y

[δ+λ(1−Γℓ̂(y))]
2

)
∂ℓ

(1− Γ(y|µ(ℓ̂)))dydℓ̂

is the land price schedule supporting assignment µ; see Appendix SA.1.4 for the derivation.

By construction, µ clears the land market. To see that it is also globally optimal, we analyze

firms’ optimal behavior. Consider a firm with attribute p. It solves (6), i.e.,

max
ℓ
J(p, ℓ) = δλF

∫ y

y

∂z(y,A(ℓ))
∂y

[δ + λ(1− Γℓ(y))]
2 (1− Γ(y|p))dy − δλF

∫
ℓ

ℓ

∫
y

y

∂

(
∂z(y,A(ℓ̂))

∂y

[δ+λ(1−Γℓ̂(y))]
2

)
∂ℓ

(1− Γ(y|µ(ℓ̂)))dydℓ̂− k.

To reduce notation, we define

J (p, ℓ) := δλF

∫ y

y

∂z(y,A(ℓ))
∂y

[δ + λ(1− Γℓ(y))]
2 (1− Γ(y|p))dy,

which is supermodular in (p, ℓ) under the conditions specified in Proposition 1. Firm p thus solves

max
ℓ

J (p, ℓ)−
∫ ℓ

ℓ

∂J (µ(ℓ̂), ℓ̂)

∂ℓ
dℓ̂− k,

with solution p = µ(ℓ). To show that µ(ℓ) is a global optimum, note that for any ℓ′ < ℓ

J (p, ℓ)−
∫ ℓ

ℓ

∂J (µ(ℓ̂), ℓ̂)

∂ℓ
dℓ̂ ≥ J (p, ℓ′)−

∫ ℓ′

ℓ

∂J (µ(ℓ̂), ℓ̂)

∂ℓ
dℓ̂

if and only if
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J (p, ℓ)− J (p, ℓ′) ≥
∫ ℓ

ℓ′

∂J (µ(ℓ̂), ℓ̂)

∂ℓ
dℓ̂. (A.4)

Since p = µ(ℓ) and since J (p, ℓ)− J (p, ℓ′) =
∫ ℓ
ℓ′
∂J (p,ℓ̂)
∂ℓ dℓ̂, it follows that (A.4) is equivalent to

∫ ℓ

ℓ′

∂J (µ(ℓ), ℓ̂)

∂ℓ
dℓ̂ ≥

∫ ℓ

ℓ′

∂J (µ(ℓ̂), ℓ̂)

∂ℓ
dℓ̂

and this holds due to the (strict) supermodularity of J (p, ℓ) and µ(ℓ) ≥ µ(ℓ̂) for all ℓ̂ ∈ [ℓ′, ℓ].

Moreover, it holds strictly if ℓ̂ ̸= ℓ. Hence, firm p strictly prefers ℓ over ℓ̂ < ℓ. A similar argument

holds for ℓ̂ > ℓ, and hence choosing ℓ is the unique global optimum for p. Since p was arbitrary, all

firm types behave globally optimally. We have shown that the optimal µ (and thus Γℓ) coincides

with the postulated µ (and thus Γℓ) from above, i.e., we have constructed an equilibrium. Note

that all land is occupied, and that, for each ℓ, land (owner) ℓ obtains k(ℓ) ≥ 0.

To see that this equilibrium is unique, we first note that by Proposition 1, there exists a unique

optimal assignment µ, which is deterministic (and satisfies PAM). Second, the uniqueness of k(ℓ)

(up to a constant of integration) then follows from Remarks 10.29 and 10.30 in Villani (2009). □

A.3 Proof of Proposition 3

Preliminaries. Denote the firm-level labor share by Ls(y, ℓ) := w(y, ℓ)/z(y,A(ℓ)) and let the

value-added-weighted employment density be given by g̃ℓ(y) := z(y,A(ℓ))gℓ(y)∫ y
y z(y

′,A(ℓ))gℓ(y′)dy′
, with corre-

sponding cdf G̃ℓ(y). The local labor share in each ℓ is then

LS(ℓ) =

∫ y
y w(y, ℓ)gℓ(y)dy∫ y

y z(y,A(ℓ))gℓ(y)dy
=

∫ y

y

w(y, ℓ)

z(y,A(ℓ))

z(y,A(ℓ))gℓ(y)∫ y
y z (y

′, A(ℓ)) g (y′, ℓ) dy′
dy =

∫ y

y
Ls(y, ℓ)g̃ℓ(y)dy.

Thus, for the local labor share to be decreasing in ℓ, the following must hold:

∂LS(ℓ)

∂ℓ
=
∂Ls(y, ℓ)

∂ℓ
+

∫ y

y

∂Ls(y, ℓ)

∂y

(
−∂G̃ℓ(y)

∂ℓ

)
+
∂2Ls(y, ℓ)

∂y∂ℓ
(1− G̃ℓ(y))dy < 0, (A.5)

which uses integration by parts and equals (15) since the first term is zero, ∂Ls(y, ℓ)/∂ℓ = 0.

The proof proceeds in three steps. First, we show that for φE → 0 and z sufficiently comple-

mentary in (ℓ, y), the firm-level labor share is submodular in (ℓ, y), which renders the third term

in (A.5) negative. Second, we show that a sufficiently decreasing γℓ(·) = γ(·|µ(ℓ)) guarantees that

the firm-level labor share is downward sloping. Third, we show that PAM and φE → 0 imply

that G̃ℓ is shifted by ℓ in the FOSD sense. Steps 2 and 3 ensure that the second term in (A.5) is
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negative. Thus, under PAM and the specified conditions on z, φE and γ, LS(·) is decreasing in

ℓ. We now provide the details.

Step 1. We focus on the third term in (A.5) and show that Ls(y, ℓ) is submodular in (y, ℓ) under

the stated conditions. First, we spell out the condition we have to sign:

∂2Ls(y, ℓ)

∂y∂ℓ

s
= z2

(
∂2w

∂y∂ℓ
z +

∂w

∂y

∂z

∂ℓ
− ∂w

∂ℓ

∂z

∂y
− w

∂2z

∂y∂ℓ

)
− 2z

∂z

∂ℓ

(
∂w

∂y
z − w

∂z

∂y

)
= −zw

(
∂2z

∂y∂ℓ
z − 2

∂z

∂y

∂z

∂ℓ

)
+
∂2w

∂y∂ℓ
z3 − z2

∂w

∂y

∂z

∂ℓ
− z2

∂w

∂ℓ

∂z

∂y

Note that, using (5), for large labor market frictions (φE → 0):

∂2w

∂y∂ℓ

∣∣∣∣
φE=0

= 0;
∂w

∂y

∣∣∣∣
φE=0

= 0;
∂w

∂ℓ

∣∣∣∣
φE=0

=
∂z(y,A(ℓ))

∂ℓ
; w

∣∣∣∣
φE=0

= z(y,A(ℓ)).

Hence, if z is sufficiently log-supermodular, i.e., ∂2z
∂y∂ℓz/

∂z
∂y

∂z
∂ℓ > 2, then

∂2Ls(y, ℓ)

∂y∂ℓ

∣∣∣∣
φE=0

= −z(y,A(ℓ))z
(
∂2z

∂y∂ℓ
z − 2

∂z

∂y

∂z

∂ℓ

)
− z2

∂z(y,A(ℓ))

∂ℓ

∂z

∂y
< 0,

where, if omitted, the arguments of z are (y,A(ℓ)).

Step 2. As for the second term in (A.5), we show that under the premise, firm-level labor share,

Ls(y, ℓ) =
w(y, ℓ)

z(y,A(ℓ))
= 1−

[
1 + φE(1− Γℓ(y))

]2 ∫ y
y

∂z(t,A(ℓ))
∂y

[1+φE(1−Γℓ(t))]
2dt

z(y,A(ℓ))
,

is decreasing in firm productivity y in each location ℓ. Differentiation and some algebra yield:

∂Ls(y, ℓ)

∂y
= (1− Ls(y, ℓ))

2φEγℓ(y)

1 + φE(1− Γℓ(y))
− Ls(y, ℓ)

∂z(y,A(ℓ))
∂y

z(y,A(ℓ))
. (A.6)

We will show that this expression is negative for sufficiently decreasing γℓ. It suffices that

1− Ls(y, ℓ)

Ls(y, ℓ)

2φEγℓ(y)

1 + φE(1− Γℓ(y))︸ ︷︷ ︸
:=LHS(y)

<

∂z(y,A(ℓ))
∂y

z(y,A(ℓ))︸ ︷︷ ︸
:=RHS(y)

, ∀(y, ℓ).

Toward a contradiction, suppose that ∂Ls(y,ℓ)
∂y > 0 for some y ∈ [y, y], that is, (A.6) is strictly

positive at y.

First, note that, at y = y, (A.6) is negative, since the first term is zero while the second one
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is strictly negative, or

1− Ls(y, ℓ)

Ls(y, ℓ)︸ ︷︷ ︸
=0

2φEγℓ(y)

1 + φE(1− Γℓ(y))

︸ ︷︷ ︸
=LHS(y)

<

∂z(y,A(ℓ))

∂y

z(y,A(ℓ))︸ ︷︷ ︸
=RHS(y)

.

Second, in order for ∂Ls(y,ℓ)
∂y > 0 for some y ∈ (y, y) on a set [y − ϵ, y + ϵ], ϵ > 0, it must be

that RHS(y) is smaller than LHS(y), i.e., RHS(·) must cross LHS(·) at least once and the

first crossing at point ŷ ∈ (y, y) is such that RHS(ŷ) crosses LHS(ŷ) from above. That is,

there exists ŷ ∈ (y, y) such that the slope of RHS(ŷ) is smaller than the slope of LHS(ŷ). We

now investigate these slopes.

The slope of LHS(y) is given by

∂LHS(y)

∂y
= −

∂Ls(y,ℓ)
∂y

Ls(y, ℓ)2
2φEγℓ(y)

1 + φE(1− Γℓ(y))
(A.7)

+
(1− Ls(y, ℓ))

Ls(y, ℓ)

2φE

(1 + φE(1− Γℓ(y)))2

(
∂γℓ(y)

∂y
(1 + φE(1− Γℓ(y))) + φEγℓ(y)

2

)
.

Next, the slope of RHS(y) is given by

∂RHS(y)

∂y
=
∂

∂z(y,A(ℓ))
∂y

z(y,A(ℓ))

∂y
.

Consider the first crossing of RHS(·) and LHS(·), i.e., the point ŷ ∈ (y, y) at which RHS(·)

crosses LHS(·). Noticing that the slope of LHS(·) at crossing y = ŷ simplifies due to ∂Ls(ŷ, ℓ)/∂y =

0 (by construction, see (A.7)), the difference between the slopes on the LHS and the RHS at y = ŷ

is given by

∂LHS(ŷ)

∂y
− ∂RHS(ŷ)

∂y
=

∂z(ŷ,A(ℓ))
∂y

z(ŷ, A(ℓ))

 ∂γℓ(ŷ)
∂y

γℓ(ŷ)
+

φEγℓ(ŷ)

1 + φE (1− Γℓ(ŷ))

− ∂

∂y

 ∂z(ŷ,A(ℓ))
∂y

z(ŷ, A(ℓ))

 , (A.8)

where we simplified (1− Ls(ŷ, ℓ))/Ls(ŷ, ℓ) using (A.6) when evaluated at y = ŷ.

Difference (A.8) is strictly negative at any ŷ ∈ (y, y) and ℓ ∈ [ℓ, ℓ]—so that the slope of

RHS(·) is larger than the slope of LHS(·) at ŷ and thus RHS(·) cannot cross LHS(·) from

above at that point—if for all (y, ℓ)

∂γℓ(y)
∂y

γℓ(y)
< −φEγℓ(y) +

∂

∂y
log

 ∂z(y,A(ℓ))
∂y

z(y,A(ℓ))

 . (A.9)
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We will show that condition (A.9) holds if γℓ(·) = γ(·|µ(ℓ)) is sufficiently decreasing in y.

To do so, consider two cases:

First, assume that miny,ℓ

(
∂
∂y log

(
∂z(y,A(ℓ))

∂y /z(y,A(ℓ))
))

≥ 0, which holds, for example, when

z is log-convex. Then, (A.9) holds for all (y, ℓ) if γℓ(·) is sufficiently decreasing in the sense that

max
y,ℓ

∂γℓ(y)
∂y

γℓ(y)2
< −φE . (A.10)

Second, assume that miny,ℓ

(
∂
∂y log

(
∂z(y,A(ℓ))

∂y /z(y,A(ℓ))
))

< 0, a condition that is satisfied

when z is log-concave. In this case, we consider two sub-cases:

1. Suppose that maxy,ℓ γℓ(y) < 1. In this case, (A.9) holds for all (y, ℓ) if γℓ(·) is sufficiently

decreasing in the sense that

max
y,ℓ

∂γℓ(y)
∂y

γℓ(y)
< −φE +min

y,ℓ

 ∂

∂y
log

 ∂z(y,A(ℓ))
∂y

z(y,A(ℓ))

 , (A.11)

since −φE < −φE maxy,ℓ γℓ(y).

2. Suppose that maxy,ℓ γℓ(y) ≥ 1. In this case, (A.9) holds for all (y, ℓ) if γℓ(·) is sufficiently

decreasing in the sense that

max
y,ℓ

∂γℓ(y)
∂y

γℓ(y)2
< −φE +min

y,ℓ

 ∂

∂y
log

 ∂z(y,A(ℓ))
∂y

z(y,A(ℓ))

 . (A.12)

To see that this suffices for (A.9) to hold, observe that

∂γℓ(y)
∂y

γℓ(y)
≤

maxy,ℓ γℓ(y)

γℓ(y)

∂γℓ(y)
∂y

γℓ(y)
< max

y,ℓ
γℓ(y)

−φE +min
y,ℓ

∂

∂y
log

 ∂z(y,A(ℓ))
∂y

z(y,A(ℓ))


≤ −φEγℓ(y) + min

y,ℓ

∂

∂y
log

 ∂z(y,A(ℓ))
∂y

z(y,A(ℓ))

 ≤ −φEγℓ(y) +
∂

∂y
log

 ∂z(y,A(ℓ))
∂y

z(y,A(ℓ))

 ,

where the second inequality follows from condition (A.12); the first and the third inequalities

follow from the premise maxy,ℓ γℓ(y) ≥ 1 in this case; and the fourth inequality follows from

miny,ℓ

(
∂
∂y log

(
∂z(y,A(ℓ))

∂y /z(y,A(ℓ))
))

≤
(
∂
∂y log

(
∂z(y,A(ℓ))

∂y /z(y,A(ℓ))
))

.

Summarizing the different conditions (A.10)-(A.12), we have shown that if γℓ(·) = γ(·|µ(ℓ))
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is sufficiently decreasing in y, i.e.,

max

{
max
y,ℓ

∂γℓ(y)
∂y

γℓ(y)2
,max
y,ℓ

∂γℓ(y)
∂y

γℓ(y)

}
< −φE +max

{
0,min

y,ℓ

 ∂

∂y
log

 ∂z(y,A(ℓ))
∂y

z(y,A(ℓ))

},
then (A.9) holds. This implies that RHS(·) cannot cross LHS(·) from above at ŷ—a contradic-

tion. As a result, the specified assumption on γℓ(·) guarantees that the firm-level labor share,

Ls(·, ℓ), is decreasing in firm productivity y, for each ℓ.

Step 3. As for the second term in (A.5), we now show that sufficiently large labor market

frictions and PAM guarantee that ℓ shifts G̃ℓ in a FOSD sense.

First note that for any ℓ′ < ℓ′′ and y < y, G̃ℓ′′ ≤ G̃ℓ′ iff∫ y
y gℓ′′(ỹ)z(ỹ, A(ℓ

′′))dỹ∫ y
y gℓ′′(ỹ)z(ỹ, A(ℓ

′′))dỹ
≤

∫ y
y gℓ′(ỹ)z(ỹ, A(ℓ

′))dỹ∫ y
y gℓ′(ỹ)z(ỹ, A(ℓ

′))dỹ

⇔
∫ y

y
gℓ′′(ỹ)z(ỹ, A(ℓ

′′))dỹ

∫ y

y
gℓ′(ỹ)z(ỹ, A(ℓ

′))dỹ ≤
∫ y

y
gℓ′(ỹ)z(ỹ, A(ℓ

′))dỹ

∫ y

y
gℓ′′(ỹ)z(ỹ, A(ℓ

′′))dỹ,

i.e., if
∫ y
y gℓz(y,A(ℓ)) is log-supermodular in (y, ℓ), which is guaranteed if both z and gℓ are

log-supermodular. The former is assumed under the premise. To establish the latter, note that

gℓ(y) =
γℓ(y)(1 + φE)

(1 + φE(1− Γℓ(y)))2
.

Cross-differentiating log(gℓ) shows that gℓ is log-supermodular if for all (y, ℓ)

∂2 log γℓ(y)

∂y∂ℓ
≥ − 2φE

(1 + φE(1− Γℓ(y)))2

(
∂2Γℓ(y)

∂ℓ∂y
(1 + φE(1− Γℓ(y))) + φE

∂Γℓ(y)

∂y

∂Γℓ(y)

∂ℓ

)
∂2 log γℓ(y)

∂y∂ℓ
≥ −

(
2φE

(1 + φE(1− Γℓ(y)))

∂2Γℓ(y)

∂ℓ∂y
+

2(φE)2

(1 + φE(1− Γℓ(y)))2
∂Γℓ(y)

∂y

∂Γℓ(y)

∂ℓ

)
∂2 log γ(y|p)

∂y∂p
µ′(ℓ) ≥ −

(
2φE

(1 + φE(1− Γℓ(y)))

∂2Γ(y|p)
∂p∂y

µ′(ℓ) +
2(φE)2

(1 + φE(1− Γℓ(y)))2
∂Γ(y|p)
∂y

∂Γ(y|p)
∂p

µ′(ℓ)

)
∂2 log γ(y|p)

∂y∂p
≥ −

(
2φE

(1 + φE(1− Γℓ(y)))

∂2Γ(y|p)
∂p∂y

+
2(φE)2

(1 + φE(1− Γℓ(y)))2
∂Γ(y|p)
∂y

∂Γ(y|p)
∂p

)
,

where the last inequality follows under PAM, µ′(ℓ) > 0. We want the following to hold for all (y, p):

∂2 log γ(y|p)
∂y∂p

≥ 2φE max
y,p

(
−∂

2Γ(y|p)
∂p∂y

)
+ 2(φE)2max

y,p

(
∂Γ(y|p)
∂y

(
−∂Γ(y|p)

∂p

))
, (A.13)

where the maxima on the RHS are positive and well-defined as we maximize continuous functions
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over compact sets. The LHS is strictly positive for all (y, p) under our assumption that γ(y|p)

satisfies the strict monotone likelihood ratio property (i.e., that γ(y|p) is log-supermodular in

(y, p)). For (A.13) to hold, it therefore suffices that φE is small enough: The LHS is constant

in φE and strictly positive; and the RHS is increasing in φE , starting at 0 and ending at ∞.

Then, by the Intermediate Value Theorem, there is an intersection of the two and so there exists

a point φ̂E such that for φE < φ̂E , (A.13) holds strictly. It follows that gℓ is log-supermodular,

implying that ℓ shifts G̃ℓ in the FOSD sense, i.e., ∂G̃ℓ/∂ℓ ≤ 0, provided that φE is small enough.

As a result of Step 2 and Step 3, the second term of (A.5) is negative for sufficiently small φE .

Thus, based on Steps 1, 2 and 3, the integrand of (A.5) is strictly negative under PAM

for sufficiently small φE , sufficiently complementary z and sufficiently decreasing γ(·|µ(ℓ)) with

p = µ(ℓ), rendering (A.5) negative. □

A.4 Proof of Corollary 1

Under goods’ market clearing, aggregate output in ℓ equals aggregate wages plus profits and land

prices in equilibrium

∫ y

y

z(y,A(ℓ))l(y, ℓ)dΓ(y|(µ(ℓ)) =
∫ y

y

w(y, ℓ)l(y, ℓ)dΓ(y|(µ(ℓ))+φF
∫ y

y

∫ y

y

A(ℓ)

[1 + φE(1− Γ(t|ℓ))]2
dtdΓ(y|(µ(ℓ))

=

∫ y

y

w(y, ℓ)l(y, ℓ)dΓ(y|(µ(ℓ)) + φF
∫ y

y

A(ℓ)

[1 + φE(1− Γ(y|(µ(ℓ)))]2
(1− Γ(y|(µ(ℓ)))dy,

where we used integration by parts in the second line. Thus, the labor share is given by:

LS(ℓ) :=

∫ y
y w(y, ℓ)l(y, ℓ)dΓ(y|(µ(ℓ))∫ y

y z(y,A(ℓ))l(y, ℓ)dΓ(y|(µ(ℓ))
= 1−

φF
∫ y
y

A(ℓ)
[1+φE(1−Γ(y|(µ(ℓ)))]2 (1− Γ(y|(µ(ℓ)))dy∫ y
y z(y,A(ℓ))l(y, ℓ)dΓ(y|(µ(ℓ))

.

At the same time, aggregate output in the denominator can be expressed as follows, using

that Γ is Pareto and firm size expression (3):

∫ y

y
z(y,A(ℓ))l(y, ℓ)dΓ(y|(µ(ℓ)) =

∫ y

y
A(ℓ)y · l(y, ℓ) 1

µ(ℓ)
y
− 1

µ(ℓ)
−1
dy

=
1

µ(ℓ)
φF
∫ y

y

A(ℓ)

[1 + φE(1− Γ(y|(µ(ℓ)))]2
(1− Γ(y|(µ(ℓ)))dy

Plugging aggregate output back into LS(ℓ) above, we obtain LS(ℓ) = 1−µ(ℓ). Thus, LS′(ℓ) < 0

if and only if µ′(ℓ) > 0. □
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A.5 Proof of Proposition 4

Consider a firm in ℓ with rank R := Γℓ(y) ∈ [0, 1]. Its wage is given by:

w(y, ℓ) = z(y,A(ℓ))− [1 + φE(1− Γℓ(y))]
2

∫ y

y

∂z(t,A(ℓ))
∂y

[1 + φE(1− Γℓ(t))]2
dt, Γℓ(t) = x, γℓ(t)dt = dx

w(Γ−1
ℓ (R), ℓ) = z(Γ−1

ℓ (R), A(ℓ))− [1 + φE(1−R)]2
∫ R

0

∂z(Γ−1
ℓ (x),A(ℓ))

∂y

[1 + φE(1− x)]2
1

γℓ(Γ
−1
ℓ (x))

dx (A.14)

where we used a change of variable and we denote by γℓ(Γ
−1
ℓ (x)) the pdf at the xth quantile.

Also, for later use, let l̃(R) := gℓ
(
Γ−1
ℓ (R)

)
/γℓ
(
Γ−1
ℓ (R)

)
= (1 + φE)/(1 + φE(1− Γℓ(Γ

−1
ℓ (R))))2

be the firm size density at a firm with productivity rank R = Γℓ(y), which only depends on firm’s

local rank R, not on ℓ.

First, using this notation, the wage as a function of local firm productivity rank R is given by

w(Γ−1
ℓ (R), ℓ) = z(Γ−1

ℓ (R), A(ℓ))−
∫ R

0

l̃(x)

l̃(R)

∂z(Γ−1
ℓ (x), A(ℓ))

∂R
dx

=
l̃(0)

l̃(R)
z(Γ−1

ℓ (0), A(ℓ)) +

∫ R

0

l̃′(x)

l̃(R)
z(Γ−1

ℓ (x), A(ℓ))dx

where we use the integration by part in the second line. We obtain the following relative wage

between a firm with rank R and the least productive firm

w(Γ−1
ℓ (R), ℓ)

w(Γ−1
ℓ (0), ℓ)

=
l̃(0)

l̃(R)
+

∫ R

0

l̃′(x)

l̃(R)

z(Γ−1
ℓ (x), A(ℓ))

z(Γ−1
ℓ (0), A(ℓ))

dx.

Second, differentiating this wage ratio wrt ℓ gives,

∂

∂ℓ

(
w(Γ−1

ℓ (R), ℓ)

w(Γ−1
ℓ (0), ℓ)

)
=

∫ R

0

l̃′(x)

l̃(R)

∂

∂ℓ

(
z(Γ−1

ℓ (x), A(ℓ))

z(Γ−1
ℓ (0), A(ℓ))

)
dx.

To show that this expression is positive, observe that

∂

∂ℓ

(
z(Γ−1

ℓ (x), A(ℓ))

z(Γ−1
ℓ (0), A(ℓ))

)
=

∂Γ−1
ℓ (x)

∂ℓ

∂z(Γ−1
ℓ (x),A(ℓ))

∂y

z(Γ−1
ℓ (0), A(ℓ))

+A′(ℓ)

 ∂z(Γ−1
ℓ (x),A(ℓ))

∂A

z(Γ−1
ℓ (x), A(ℓ))

−
∂z(Γ−1

ℓ (0),A(ℓ))

∂A

z(Γ−1
ℓ (0), A(ℓ))

 z(Γ−1
ℓ (x), A(ℓ))

z(Γ−1
ℓ (0), A(ℓ))

> 0.

The first term is positive under positive firm sorting since ∂
∂ℓΓ

−1
ℓ (R) = − ∂

∂ℓΓℓ(y)/γℓ(y) (using

the Implicit Function Theorem together with the fact given that under positive firm sorting
∂
∂ℓΓℓ(y) ≤ 0); and the second term is positive under weakly log-supermodular z in (y,A). □
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A.6 Proof of Proposition 5

First, the denominator of the spatial wage premium, E[w(Γ−1
ℓ (R), ℓ)|ℓ]/E[w(Γ−1

ℓ (R), ℓ)|ℓ], is

independent of ℓ, so we focus on how the numerator varies with location index ℓ.

Second, to derive E[w(Γ−1
ℓ (R), ℓ)|ℓ] consider the average wage across firms in location ℓ:

E[w(y, ℓ) | ℓ] =
∫ ȳ

y
w(y, ℓ)gℓ(y)dy

=

∫ ȳ

y
w(y, ℓ)

gℓ(y)

γℓ(y)
γℓ(y)dy

=

∫ 1

0

w(Γ−1
ℓ (R), ℓ)

w(Γ−1
ℓ (0), ℓ)

w(Γ−1
ℓ (0), ℓ) l̃(R) dR

= z(y,A(ℓ))

∫ 1

0

w(Γ−1
ℓ (R), ℓ)

w(Γ−1
ℓ (0), ℓ)

l̃(R) dR

= E[w(Γ−1
ℓ (R), ℓ) | ℓ],

where we used the change of variable R = Γℓ(y) in the third line.

Third, differentiating E[w(Γ−1
ℓ (R), ℓ) | ℓ] wrt ℓ yields

∂E[w(Γ−1
ℓ (R), ℓ) | ℓ]
∂ℓ

= A′(ℓ)
∂z(y,A(ℓ))

∂A

∫ 1

0

w(Γ−1
ℓ (R), ℓ)

w(Γ−1
ℓ (0), ℓ)

l̃(R) dR+ z(y,A(ℓ))

∫ 1

0

∂

∂ℓ

(
w(Γ−1

ℓ (R), ℓ)

w(Γ−1
ℓ (0), ℓ)

)
l̃(R) dR,

which is positive under positive firm sorting, where we rely on the result established in Proposition

4. Note that this derivative is equal to (18) when z(y,A) = yA. □

Remark. There is a second way to establish that E[w(Γ−1
ℓ (R), ℓ) | ℓ] is increasing in ℓ under pos-

itive firm sorting, which does not rely on the assumption of log-supermodular z (Proposition 5).

Recall the wage as a function of local firm productivity rank R (as opposed to productivity y) is

given by (A.14). The average wage in a given location ℓ can then be expressed as

E[w(Γ−1
ℓ (R), ℓ)|ℓ] =

∫ 1

0
w(Γ−1

ℓ (R), ℓ)l̃(R)dR =

∫ 1

0
w(Γ−1

ℓ (R), ℓ)dGℓ(Γ
−1
ℓ (R))

= w(Γ−1(0), ℓ) +

∫ 1

0

∂w(Γ−1
ℓ (R), ℓ)

∂R
(1−Gℓ(Γ

−1
ℓ (R)))dR,

where the first line uses dGℓ(Γ
−1
ℓ (R))

dR =
gℓ(Γ

−1
ℓ (R))

γℓ(Γ
−1
ℓ (R))

= l̃(R), and the second line applies integration

by parts. As in the text, we measure the spatial wage premium as the average wages of more

productive locations relative to the least productive one, E[w(Γ−1
ℓ (R), ℓ)|ℓ]/E[w(Γ−1

ℓ (R), ℓ)|ℓ].

To illustrate the drivers of spatial inequality, we consider how this measure varies as we increase
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ℓ, where the derivative of the spatial wage premium wrt ℓ is equal in sign ( s
=) to

∂
E[w(Γ−1

ℓ (R),ℓ)|ℓ]
E[w(Γ−1

ℓ (R),ℓ)|ℓ]

∂ℓ

s
=

w(Γ−1(0), ℓ)

∂ℓ︸ ︷︷ ︸
Spatial Variation in

Wage Ladder Intercept

+

∫ 1

0

∂2w(Γ−1
ℓ (R), ℓ)

∂R∂ℓ︸ ︷︷ ︸
Spatial Variation in

Steepness of Wage Ladder

(1−Gℓ(Γ
−1
ℓ (R)))dR, (A.15)

where we note that employment composition Gℓ(Γ−1
ℓ (R)) at rank R is independent of ℓ. Equation

(A.15) gives a similar decomposition of the drivers of the spatial wage premium as (18). But for

this derivative to be positive, we rely on a slightly different way to express the steepening of the

local wage ladder in ℓ, ∂2w(Γ−1
ℓ (R), ℓ)/∂R∂ℓ > 0, which we will establish next.

Differentiate (A.14) wrt R:

∂w(Γ−1
ℓ (R), ℓ)

∂R
=
∂z(Γ−1

ℓ (R), A(ℓ))

∂y

∂Γ−1
ℓ (R)

∂R
+ 2φE [1 + φE(1−R)]

∫ R

0

∂z(Γ−1
ℓ (x),A(ℓ))

∂y

[1 + φE(1− x)]2
1

γℓ(Γ
−1
ℓ (x))

dx−
∂z(Γ−1

ℓ (R)),A(ℓ)

∂y

γℓ(Γ
−1
ℓ (R))

= 2φE [1 + φE(1−R)]

∫ R

0

∂z(Γ−1
ℓ (x)),A(ℓ)

∂y

[1 + φE(1− x)]2
1

γℓ(Γ
−1
ℓ (x))

dx

= 2φE [1 + φE(1−R)]

∫
Γ−1
ℓ (R)

y

∂z(t,A(ℓ))
∂y

(1 + φE(1− Γℓ(t)))2
dt.

Differentiate wrt ℓ:

∂2w(Γ−1
ℓ (R), ℓ)

∂R∂ℓ
= 2φE

(
1 + φE(1−R)

) ∂
∂ℓ

∫
Γ−1
ℓ (R)

y

∂z(t,A(ℓ))
∂y

(1 + φE(1− Γℓ(t)))2
dt,

which is positive since (i) Γ−1
ℓ (R) is increasing in ℓ since ∂

∂ℓΓ
−1
ℓ (R) = − ∂

∂ℓΓℓ(y)/γℓ(y) (using

the Implicit Function Theorem together with the fact given that under positive firm sorting
∂
∂ℓΓℓ(y) ≤ 0); and (ii) under the sufficient conditions for positive firm sorting in Proposition 1,
∂z(y,A(ℓ))

∂y /(1 + φE(1− Γℓ(y)))
2 is also increasing in ℓ. □

A.7 Spatial Heterogeneity in EE Wage Growth

We will show conditions on primitives under which EE wage growth is higher in high-ℓ locations.

Preliminaries. Average wage growth due to an EE transition in location ℓ is given by

E
[
gEEw |ℓ

]
=

∫ ȳ
y

∫ ȳ
y

(
w(t,ℓ)
w(y,ℓ) − 1

)
dΓℓ(t)dGℓ(y)∫ ȳ

y

∫ ȳ
y dΓℓ(t)dGℓ(y)

.
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We can re-express this as

E
[
gEEw |ℓ

]
=

∫ ȳ
y

∫ ȳ
y

(
w(t,ℓ)
w(y,ℓ) − 1

)
dΓℓ(t)dGℓ(y)∫ ȳ

y

∫ y
y dΓℓ(t)dGℓ(y)

=

∫ ȳ

y

∫ ȳ

y

(
w(t, ℓ)

w(y, ℓ)
− 1

) γℓ(t)
γℓ(y)

(1+φE(1−Γℓ(y)))2∫ y
y (1− Γℓ(y))

γℓ(y)

(1+φE(1−Γℓ(y)))
2 dy

dt dy

=

∫ 1

0

∫ 1

S

(
w
(
Γ−1
ℓ (R), ℓ

)
w
(
Γ−1
ℓ (S), ℓ

) − 1

) 1

(1+φE(1−S))2∫ 1
0

1−T
(1+φE(1−T ))2

dT
dR dS, (A.16)

where, to go from the second to the third line, we use the following changes of variables R = Γℓ(t),

S = Γℓ(y) and T = Γℓ(y).

Proposition A1 (Spatial Heterogeneity in EE Wage Growth). Suppose z(y,A(ℓ)) = yA(ℓ). EE

wage growth is higher in high-ℓ locations, or ∂E[gEEw |ℓ]/∂ℓ > 0, if the quantile function, Γ−1
ℓ (R),

is log-supermodular in (R, ℓ).

Proof. From (A.16), E
[
gEEw |ℓ

]
is increasing in ℓ if the wage ladder is increasingly steep in ℓ, i.e.,

if w
(
Γ−1
ℓ (R), ℓ

)
/w
(
Γ−1
ℓ (S), ℓ

)
is increasing in ℓ for all S < R.

We will show that the relative wage between two firms with local ranks S < R, w(R,ℓ)
w(S,ℓ) , is

increasing in ℓ if the quantile function, Γ−1
ℓ (R), is log-supermodular in (R, ℓ). From (A.14), we

obtain the following expression:

w(R, ℓ)
w(S, ℓ)

l̃(R)

l̃(S)
=
l̃(0)z(y,A(ℓ)) +

∫R
0 l̃′(x)z(Γ−1

ℓ (x), A(ℓ))dx

l̃(0)z(y,A(ℓ)) +
∫ S
0 l̃′(x)z(Γ−1

ℓ (x), A(ℓ))dx
= 1 +

∫R
S l̃′(x)Γ−1

ℓ (x)dx

l̃(0)y +
∫ S
0 l̃′(x)Γ−1

ℓ (x)dx
,

where l̃(R) = gℓ(Γ
−1
ℓ (R))/γℓ(Γ

−1
ℓ (R)) is the size density of a firm with rank R and A(ℓ) cancels

out in the last term. Using the above formula, we consider the derivative of relative wage wrt ℓ,

∂

∂ℓ

w(R, ℓ)
w(S, ℓ)

s
=

∂

∂ℓ

(
w(R, ℓ)
w(S, ℓ)

l̃(R)

l̃(S)

)
s
=

(
l̃(0)y +

∫ S

0

l̃′(x)Γ−1
ℓ (x)dx

)∫ R

S
l̃′(x)

∂Γ−1
ℓ (x)

∂ℓ
dx−

(∫ R

S
l̃′(x)Γ−1

ℓ (x)dx

)∫ S

0

l̃′(x)
∂Γ−1

ℓ (x)

∂ℓ
dx

=

∫ R

S
l̃′(x)

∂Γ−1
ℓ (x)

∂ℓ
dx

l̃(0)y + ∫ S

0

l̃′(x)Γ−1
ℓ (x)dx−

∫R
S l̃′(x)Γ−1

ℓ (x)dx
∫ S
0
l̃′(x)

∂Γ−1
ℓ (x)

∂ℓ dx∫R
S l̃′(x)

∂Γ−1
ℓ (x)

∂ℓ dx

 .
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Under positive firm sorting, this expression is positive if

∫R
S l̃′(x)

∂Γ−1
ℓ (x)

∂ℓ dx∫R
S l̃′(x)Γ−1

ℓ (x)dx
≥
∫ S
0 l̃′(x)

∂Γ−1
ℓ (x)

∂ℓ dx∫ S
0 l̃′(x)Γ−1

ℓ (x)dx
=

∫ 0
S l̃

′(x)
∂Γ−1

ℓ (x)

∂ℓ dx∫ 0
S l̃

′(x)Γ−1
ℓ (x)dx

≥ 0.

This inequality holds if
∫R
S l̃′(x)Γ−1

ℓ (x)dx is log-supermodular in (R, ℓ), which is satisfied if the

quantile function, Γ−1
ℓ (R), is log-supermodular in (R, ℓ).

We will now show that if Γ(y|p) is a Pareto distribution then EE wage growth is higher in

high-ℓ locations:

Corollary 2 (Spatial Heterogeneity in EE Wage Growth: Pareto). Suppose z(y,A(ℓ)) = yA(ℓ)

and Γ(y|p) ∼ Pareto(1, 1/p). If there is positive firm sorting across space, then EE wage growth

is higher in high-ℓ locations, ∂E[gEEw |ℓ]/∂ℓ > 0.

Proof. By Proposition A1, it suffices to show that the quantile function of Pareto distribution,

Γ−1
ℓ (R) = (1−R)−µ(ℓ), is log-supermodular in (R, ℓ). Under PAM, this condition is satisfied, as

∂2 log(1−R)−µ(ℓ)

∂ℓ∂R = µ′(ℓ)
1−R > 0.

A.8 Neutral Productivity Shifts & Implications for Labor Share and Wages

Neutral Productivity Shifts: Definition. We say that spatial firm sorting induces “neutral

firm productivity shifts” across locations if firm productivity in one location is simply a scaled

version of firm productivity of another location.

To formalize this notion, suppose y ∼ Γℓ(y) in location ℓ and y′ ∼ Γℓ′(y
′) in location ℓ′, where

y′ = ay for some constant a > 0 (which violates Assumption 1.1 of common support of Γ(·|p)

for all p). Then, since y ∼ Γℓ(y) we have y′

a ∼ Γℓ(y). Moreover, Γℓ′(y′) = P
[
Y ′ ≤ y′

]
= P

[
Y ′

a ≤
y′

a

]
= Γℓ(

y′

a ) and γℓ′(y
′) = 1

aγℓ(
y′

a ). If a > 1, then Γℓ′ first-order stochastically dominates Γℓ.49

We also assume z(y,A(ℓ)) = yA(ℓ).

Scaling Property of Wages. To show that under neutral firm productivity shifts across

locations, the wage structure is almost the same everywhere, it will be useful to first establish

the following scaling property of wages, where we can express the wage in location ℓ′ as:
49One example of neutral productivity shifts is a scenario in which regions differ in the scale (and not the tail) parameter of

the Pareto distribution.
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w(y′, ℓ′) = A(ℓ′)y′ − (1 + φE(1− Γℓ′(y
′)))2

∫ y′

y′

A(ℓ′)

[1 + φE(1− Γℓ′(t′))]2
dt′

= A(ℓ′)y′ − (1 + φE(1− Γℓ(y
′/a)))2

∫ y′

y′

A(ℓ′)

[1 + φE(1− Γℓ(t′/a))]2
dt′

= aA(ℓ′)y′/a− a(1 + φE(1− Γℓ(y
′/a)))2

∫ y′/a

y

A(ℓ′)

[1 + φE(1− Γℓ(t))]2
dt (change of var. t′ = at)

= aw(y′/a, ℓ)
A(ℓ′)

A(ℓ)
. (A.17)

No Spatial Variation in Local Labor Shares. We first show that under neutral firm

productivity shifts across locations, there is no spatial variation in local labor shares (in con-

trast to Proposition 3).

Recall that l(y, ℓ) is a function of Γℓ(y) and from our observations, l(y′/a, ℓ) = l(y′, ℓ′). Then:

LS(ℓ′) =

∫ y′
y′ w(y

′, ℓ′)l(y′, ℓ′)γℓ′(y
′)dy′∫ y′

y′ z(y
′, A(ℓ′))l(y′, ℓ′)γℓ′(y′)dy′

=

∫ y
y w(ay, ℓ

′)l(ay, ℓ′)γℓ′(ay)ady∫ y
y z(ay,A(ℓ

′))l(ay, ℓ′)γℓ′(ay)ady
(change of var. y′ = ay)

=

∫ y
y w(ay, ℓ

′)l(y, ℓ)γℓ(y)dy∫ y
y z(ay,A(ℓ

′))l(y, ℓ)γℓ(y)dy

=

∫ y
y aw(y, ℓ)

A(ℓ′)
A(ℓ) l(y, ℓ)γℓ(y)dy∫ y

y z(y,A(ℓ))a
A(ℓ′)
A(ℓ) l(y, ℓ)γℓ(y)dy

= LS(ℓ),

where we made use of the definition of a neutral productivity shift and the scaling property of

wages (A.17).

No Spatial Variation in Local Wage Ladders. We aim to show that local wage ladders

are equally steep in all locations, or for any two locations ℓ ̸= ℓ′

w(Γ−1
ℓ′ (R), ℓ′)

w(Γ−1
ℓ′ (S), ℓ′)

=
w(Γ−1

ℓ (R), ℓ)

w(Γ−1
ℓ (S), ℓ)

,

where R and S satisfy R > S and are arbitrary quantiles of the local firm distributions.

Using the scaling property of wages (A.17), the LHS can be expressed as

w(Γ−1
ℓ′ (R), ℓ′)

w(Γ−1
ℓ′ (S), ℓ′)

=

A(ℓ′)
A(ℓ)

A(ℓ′)
A(ℓ)

aw

(
Γ−1
ℓ′ (R)

a , ℓ

)
aw

(
Γ−1
ℓ′ (S)
a , ℓ

) =
w(Γ−1

ℓ (R), ℓ)

w(Γ−1
ℓ (S), ℓ)

,

where the last equality uses y = Γ−1
ℓ (R) and our definition of the neutral productivity shift,

A-16



y′ = ay. Thus, the wage ratio of two firms with productivity ranks R and S is the same in any

two locations ℓ and ℓ′.

No Spatial Variation in Within-Location Wage Inequality. Replacing S = 0 in the last

paragraph immediately implies that, under neutral firm productivity shifts, there are no spatial

differences in within-location inequality (in contrast to Proposition 4).

No Spatial Variation in Local EE Wage Growth. Since we have established above that

under neutral firm productivity shifts, the wage ratio of two firms with ranks R and S is the

same in any two locations ℓ and ℓ′, an EE transition leads on average to the same wage gains in

all locations, see (A.16) (in contrast to Proposition A1).

B Quantitative Model: Labor Mobility & Residential Housing

The firms’ location choice problem has the same structure as in the baseline model, only that in

(6) they now take into account that their meetings rates vary across locations.

From the firms’ perspective, congestion—which can be measured by market tightness—is

decreasing in the endogenous population size. If the local population is large, then market

tightness is small and firms’ meeting rate λF (ℓ) is high, benefiting firms. In addition, competition

that stems from poaching risk is mitigated in places with a large population: The job arrival rate

for employed workers, λE(ℓ), decreases as the population gets larger and so the probability that

firms retain workers rises.

Thus, an important question is how population size varies with ℓ. When agents conjecture

that there is positive sorting between firms and locations, high-ℓ locations are more attractive

(due to a stochastically better wage distribution), and draw in more workers. Labor market

congestion therefore benefits firms in high-ℓ locations, ∂λF /∂ℓ > 0 and ∂λE/∂ℓ < 0, alleviating

the competition channel and strengthening their desire to settle there (although this mechanism

is mitigated by congestion in the residential housing market, which prevents a massive inflow of

workers into high-ℓ locations). As a result, positive sorting materializes more easily than in the

baseline model with exogenous meeting rates that are constant across space.

We now state our result on firm sorting under labor mobility formally. To do so, again denote

the minimum of the first term on the LHS of (13) (over ℓ, y) by εP , i.e.,

εP ≡ min
ℓ,y

∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

∂z(y,A(ℓ))
∂y

.
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Assume that the labor market matching function is given by M(V(ℓ),U(ℓ)) = A
√
V(ℓ)U(ℓ) and

that workers’ flow utility function over housing and consumption is Cobb Douglas with share

parameters ω and 1 − ω, respectively. We assume that the exogenous functions B(·) and δ(·)

do not vary with ℓ (i.e., B(ℓ) = B = 1 and δ(ℓ) = δ). This is to tie our hands since there certainly

exist some assumptions on how these exogenous objects depend on ℓ that would deliver the result

of positive sorting but those conditions would have little to do with the specific mechanism of

our model. Moreover, to allow for a more general setting than in the text, we assume that local

housing supply is endogenous and given by h(ℓ) = d(ℓ)ξ, where ξ is the housing supply elasticity.

Proposition A2. Suppose B(ℓ) = B = 1 and δ(ℓ) = δ and local housing supply is given by h(ℓ) =

d(ℓ)ξ. If (i) z is strictly supermodular and either the productivity gains from sorting into higher ℓ,

εP , are sufficiently large or the competition forces, 1/δ, are sufficiently small, and (ii) housing sup-

ply elasticity ξ is sufficiently large, then there exists an equilibrium with positive sorting in (p, ℓ).

Proof. See Appendix SA.3.1. □

C Data and Sample Restrictions

C.1 Administrative Regional-Level Data from the GFSO

Data Description. We obtain regional-level data from the German Federal Statistical Office

(GFSO). To be consistent with our sample from the FDZ below, we focus on the years 2010-2017.

We obtain district-level data (for 401 districts) for all years and aggregate them to the commuting-

zone level (there are 257 CZs), using a crosswalk provided by the Federal Office for Building and

Regional Planning of Germany (Bundesinstitut für Bau-, Stadt- und Raumforschung—BBSR).

Finally, we take (simple) averages across years to obtain one value for each variable per CZ. If

applicable, we adjust the variables to the monthly level, for consistency with our FDZ sample.

Defining Important Variables.

Labor Compensation. Total labor compensation in a commuting zone at year t is defined as

Labor Compt =
Total Hours Worked by Total Workforcet

Total Hours Worked by Employeest
× Comp of Employeest,

and compensation of employees consists of gross wages and salaries as well as employers’ actual

and imputed social contributions. We divide by 12 to obtain the monthly statistic.

Value Added per Worker. The monthly gross value added per worker in any given CZ is calcu-

lated as the ratio of (annual) gross value added and total employment in a location, divided by 12.
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Labor Share. We construct the local labor share as the ratio between labor compensation and

gross value added in each commuting zone.

Average Wage. The average monthly wage of a commuting zone is defined by total (annual)

labor compensation divided by total employment, divided by 12.

Average Firm Size. We define average firm size of a commuting zone by the total number of

employees over the total number of establishments.

GDP per Capita. We take the ratio of (annual) GDP and population in each commuting zone;

then divide by 12 to get the monthly figure. GDP corresponds to the gross value added of all

sectors of the economy plus taxes on products, but excluding subsidies on products.

Unemployment Rate. We first use unemployment rates and number of unemployed workers

at the district level to obtain the number of people who are in the labor force in each district.

We then sum by commuting zone the number of unemployed workers as well as the number of

people in the labor force and divide them to obtain the local unemployment rate.

Rent-to-Income Ratio. Germany-wide rent-to-income ratio of the main tenant household.

Trade Tax Rate. The trade tax (Gewerbesteuer) is levied on the adjusted profit of corporations.

It combines a base rate (universal to all municipalities, 3.5%) and a municipal tax rate (which

is a multiplier to the base rate and at the discretion of each municipality). We focus on the

municipal tax rate and refer to it as trade tax rate. We first aggregate municipal tax rates to the

district level and then to the CZ level using population weights.

Share of Employees with a Degree. In each CZ, we take the ratio of employees with an academic

degree and all employees subject to social security contributions at the place of work.

Net Business Registration Intensity. We define net business registration intensity at the CZ

level as the balance between business registrations and de-registrations per 1,000 inhabitants.

C.2 Administrative Worker- and Firm-Level Data from the FDZ

Data Description. We use worker-/firm-level data provided by the Research Data Centre

(FDZ) of the German Federal Employment Agency at the Institute for Employment Research.

We use three datasets from FDZ: LIAB (Linked Employer-Employee Data), BHP (Establish-

ment History Panel 7518), and EP (Establishment Panel).

The LIAB data links annual information on establishments with information on all individuals

employed at those establishments.50 Surveyed establishments (the ‘panel cases’) are followed

between 2009-2016 and we observe individual-level information for all their employees. This
50Because we only observe data at the level of the establishment, we use ‘establishments’ and ‘firms’ interchangeably.
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individual-level data, which includes workers’ gender, education, full-time employment status,

gross daily wages and work district, is assembled from official social security records. For more

information, see Ruf et al. (2021a) and Ruf et al. (2021b).

We augment these datasets with the Establishment History Panel 7518 (BHP), a 50% random

sample of all German establishments with at least one employee subject to social security as of

June 30 in any given year. In addition to standard information like total employment and average

wages, it contains total inflows and outflows of workers at the establishment level.

Moreover, linking the BHP to the LIAB, we observe basic information for any employer in

workers’ entire employment history between 1975 and 2018. While the original data is in a spell

format, we transform it into a monthly panel.51

We complement these main data sources with information on firm-level sales and costs of

inputs from the Establishment Panel (EP). The EP is a nationally representative survey of about

15,000 firms that reports standard balance-sheet information on sales, inputs and employment,

as well as information on a variety of survey questions on topics related to employment policy.

Sample Restrictions. Our baseline sample pools the years 2010-2017. We focus on full-time

employees. We drop establishments with less than 5 employees and establishments whose mean

real daily wage across the sample period is lower than 15 Euros, measured in 2015 euros (this

wage restriction is based on Card et al. (2013)).

Defining Important Variables. Monthly Real Wage. To compute an individual’s monthly

real wage, we multiply daily wages by 30, and deflate these nominal wages using the German

CPI (Table 61111-0001 in the GENESIS database of the German Federal Statistical Office). The

CPI base year is 2015. Data Source: Establishment History Panel (BHP).

Value Added per Full-Time Employee. We measure value added at the firm-level as the dif-

ference between sales and input costs as reported in the Establishment Panel, divided by the

number of full-time employees. See also Bruns (2019). We deflate these variables using the same

CPI as above. Data Source: Establishment Panel (EP).

Employment-to-Employment (EE) Transition. We say a worker made an EE move in month

t in any of the following scenarios: (i) if they were employed at some establishment in month

t− 1 and are employed at a different establishment in month t; (ii) if they are employed at some

establishment in month t− 3 (or t− 2), disappear from the sample during months t− 2 and t− 1

(or only t − 1) without claiming unemployment benefits, and are employed again at a different
51If a new spell starts in the middle of a month, we assign the month to the longest spell within the month.
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establishment in month t. In scenario (ii), we consider it likely that the new job was already lined

up when the worker left the previous one. Data Source: Linked Employer-Employee Data (LIAB).

Unemployment-to-Employment (UE) Transition. A worker made a UE move in month t if they

were unemployed—that is, collecting unemployment benefits—in month t− 1 and are employed

at some establishment in t. Data Source: Linked Employer-Employee Data (LIAB).

Employment-to-Unemployment (EU) Transition. A worker made an EU move in month t if

they were employed at some establishment in month t− 1 and are (officially) unemployed in t or

permanently disappear from the sample (we exclude December 2017 from this count, since it is

the last month in our panel). Data Source: Linked Employer-Employee Data (LIAB).

Labor Market Transition Rates. In our regression analysis, we construct measures of workers’

monthly transition rates from the data: We proxy the contact rate of employed workers λE by the

realized EE transition rate in the data. For the contact rate λU and the rate of job destruction

δ—since in the model, unemployed workers accept all offers and separations to unemployment

are exogenous—they are equal to the realized rates. Specifically, in each t:

λEt =
# Employed workers in t− 1 working in another firm in t

# Employed workers in t− 1

λUt =
# Unemployed workers in t− 1 who are employed in t

# Unemployed workers in t− 1

δt =
# Employed workers in t− 1 who are unemployed in t

# Employed workers in t− 1
.

We measure these flows at the monthly frequency in each local labor market and then take the

average over years 2010-2017 to obtain one number per local labor market. Data Source: Linked

Employer-Employee Data (LIAB).

Firm Productivity y. We proxy the productivity type y of a firm with its sales per worker,

residualized against year and two-digit industry fixed effects. To avoid that our results are driven

by outliers, we winsorize the distribution of sales per worker at the top and bottom 1%. Data

Source: Establishment Panel (EP).

Poaching Share. To measure job flows and poaching at the firm level, we follow Moscarini and

Postel-Vinay (2018) and Bagger and Lentz (2019) and measure firms’ poaching shares, which we

define as the ratio of EE inflows relative to all inflows.52 Given our focus on local labor markets,

we also compute firms’ share of EE inflows and UE inflows that are local, i.e., from within the

same commuting zone. Data Source: Linked Employer-Employee Data (LIAB).
52In the terminology of Moscarini and Postel-Vinay (2018) and Bagger and Lentz (2019), this object refers to the poaching

inflow share and the poaching index, respectively.
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C.3 Variables from Other Data Sources

Residential Housing Prices. We use residential rental rates predicted for the centroids of postal

codes (provided to us by Gabriel Ahlfeldt based on Ahlfeldt et al. (2022)) and aggregate them

to the commuting-zone level. The model counterpart is d(ℓ) for each CZ ℓ.

Replacement Rate. We use the unemployment insurance net replacement rate. This variable is

based on data from the Out-of-Work Benefits Dataset (OUTWB), provided as part of the Social

Policy Indicator (SPIN) database (Nelson et al., 2020). Depending on household composition

and earnings, replacement rates vary and we take 60% as a reference point.

Commercial Real Estate Prices. We use price data (EUR/m2) for commercial properties

2012/13 from the German Real Estate Association (Deutscher Immobilienverband). We aggregate

prices from the city to the commuting-zone level. The model counterpart is k(ℓ).

Distance to Highway. Distance to highway is proxied by the area-weighted average car driving

time to the next federal motorway junction in minutes. We obtain this variable from the German

Federal Office for Building and Regional Planning. Data is available only for 2020.

C.4 Defining Locations

Local Labor Markets. We consider 257 commuting zones (Arbeitsmarktregionen)—our local labor

markets. These are defined for the year 2017 by the Federal Office for Building and Regional

Planning of Germany (Bundesinstitut für Bau-, Stadt- und Raumforschung—BBSR).

For the supplementary empirical analysis of firm sorting, Appendix SA.4.1, we consider a

different, more aggregate definition of local labor markets (38 NUTS2 regions, defined by the

European Union), because the number of observations per CZ is too small.

East-West. We categorize CZs into East or West Germany based on whether the districts

they consist of belong to Eastern or Western states. Many CZs contain more than one district;

however, there are no commuting zones containing districts from both East and West Germany.

Urban-Rural. We categorize CZs into Rural or Urban based on their districts. To classify a

district as Urban or Rural, we use the categorization provided by the BBSR for the year 2018 (we

use the 2017 definition of commuting zones and the 2018 definition of Urban/Rural because the

2017 definition of Urban/Rural has more than two categories, e.g., ‘Mostly Rural’, which would

require more choices on our end). When a CZ is formed by districts that are all rural, we classify

the CZ as Rural. When a CZ has at least one district that is urban, we classify it as Urban (note

that there are only 27 out of 257 commuting zones that have both urban and rural districts).
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D Empirical Analysis

D.1 Spatial Wage Inequality: Real versus Nominal

In our main analysis, we use—consistent with our theory—nominal wages to measure inequality

both within and across locations. In Table A.1 we report average wage premia after deflating

wages with local CPIs. Doing so decreases spatial inequality by about one third.

Table A.1: Spatial Inequality (Monthly, e): Real versus Nominal

German CPI Local CPI
Wage Value Added Wage Value Added

Rich-Poor Inequality

Rich 3784.6 5820.2 3899.6 5993.3
Poor 2755.2 4034.2 3135.2 4591.8
Rich/Poor 1.37 1.44 1.24 1.31

West-East Inequality

West 3491.13 5237.02 3704.85 5552.25
East 2731.63 4045.24 3122.56 4624.49
West/East 1.28 1.30 1.19 1.20

Urban-Rural Inequality

Urban 3510.01 5270.60 3701.94 5552.52
Rural 2984.37 4429.01 3372.72 5007.15
Urban/Rural 1.18 1.19 1.10 1.11

Notes: Data source: German Federal Statistical Office. With some abuse, we
denote by ‘Nominal’ those variables that are deflated using the Germany-wide CPI
in 2015; and by ‘Real’ we denote the variables that are deflated using the Local
CPI, i.e., using commuting zone-level price deflators (computed from district-level
price deflators from BBSR). “Rich-Poor Inequality” refers to the comparison of the
bottom and top quartile of CZs when grouped according to their GDP per capita.
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D.2 The Spatial Wage Premium

Figure A.1: Implication of Spatial Firm Sorting: Spatial Variation in Wages
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Notes: Data source: BHP. The figure shows a scatter plot between local average firm wages and local log GDPpc. The size
of the markers indicates the size of the CZ (i.e., the number of firms in each CZ).

D.3 Spatial Decomposition of Life-Time Earnings

In this exercise, we study the impact of heterogeneous wage ladders across space on spatial

inequality in lifetime earnings. We compare lifetime earnings in two regions, ‘rich’ and ‘poor’

locations (where ‘rich’ and ‘poor’ locations again refer to the top and bottom 25% of commuting

zones in terms of GDP per capita). We focus on a single cohort of workers in each region: They

are 25-30 years old in 2002, and we follow them over 15 years, from 2002 to 2017. We restrict

the sample to those workers who remain in the region where we first observe them.

Spatial Decomposition of Between-Location Wage Inequality. First, we measure average start-

ing wages of workers in rich and poor locations, before they climb the wage ladder. Second, we

compute average wages of workers in each region after 15 years. Third, we decompose the total

average wage growth within regions into three parts: (i) the average wage growth of workers who

never changed jobs nor experienced unemployment for more than four months (i.e., the ‘stayers’),

(ii) the average wage growth of workers who changed jobs at least once and did not experience un-

employment for more than four months (i.e., the ‘EE movers’), and (iii) the average wage growth

of workers who have been unemployed at least once for more than four months (which we call the

‘unemployed’). Average wage growth of a region equals the weighted average of wage growth in

these three categories, with the weights being equal to the number of workers in each category.

This decomposition of average wage growth allows us to assess the contribution of heteroge-

neous wage ladders across space to spatial wage inequality as follows. We compute wage growth

in rich locations imposing the (counterfactual) wage growth of EE movers from poor locations,
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Table A.2: Decomposition of Lifetime Earnings Inequality in Top versus Bottom 25% of Local Labor Markets

Top 25% Bottom 25%

Wage Growth (total) 0.595 0.362
Wage Growth of Stayers 0.540 0.364
Wage Growth of Unemployed 0.407 0.313
Wage Growth of EE Movers 0.712 0.381
Starting Wage (Monthly, e) 3670.44 2365.23
Wage after 15 Years (Monthly, e) 5854.35 3221.44

After-15-years Spatial Wage Inequality (data) 1.817
After-15-years Spatial Wage Inequality (counterfactual, same EE wage growth) 1.664
After-15-years Spatial Wage Inequality (counterfactual, same stayer wage growth) 1.720

Contribution of Job Ladder Differences to Spatial Wage Inequality 0.187
Contribution of Stayer Wage Growth Differences to Spatial Wage Inequality 0.119

Notes: Data source: LIAB. Top and bottom 25% of local labor markets (CZs) are categorized based on GDP per capita. The last
two rows report the percentage differences between the actual inequality in lifetime income (row 7) and counterfactual inequality in
lifetime income (row 8 and 9), that is, 19% ∼ (81.7− 66.4)/81.7, and 12% ∼ (81.7− 72.0)/81.7.

while keeping the number of EE movers fixed. This way, we get a measure of lifetime income

inequality across space keeping wage ladders the same across regions.

The results are in Table A.2. If poor and rich regions had the same wage ladder, spatial

inequality in lifetime income would be around 19% lower than under the heterogeneous wage

ladders that we observe in the data, i.e., the rich region would be characterized by only 66.4%

higher wages than the poor one, instead of the observed 81.7% (≈5854.35/3221.44-1).

Spatial Decomposition of Within-Location Wage Inequality. We further assess the impact of

heterogeneous wage ladders on differences in within-location wage inequality. First, we compute

the 90-10 log wage difference within each CZ and then take the average for CZs within rich and

within poor locations, based on their wages after 15 years (i.e., in 2017). Second, to compute a

measure of wage inequality within labor markets under the counterfactual of identical EE wage

growth across space, we assume that the wage growth distribution of EE movers in rich locations

follows that of poor locations, while keeping the number of EE movers and the wage growth of

other workers unchanged in each location. We then compute the counterfactual wage distribution

and the corresponding counterfactual 90-10 log wage difference in rich locations.

We find that if rich locations had the same wage ladder as poor locations, the spatial gap in

within-location wage inequality between the two regions would be 22% smaller. In the actual

data, the 90-10 log wage difference is 1.145 in rich locations and 0.869 in poor regions, resulting

in a gap of 0.276 log points. In turn, in our counterfactual scenario, the 90-10 log wage difference

in rich regions would decline from 1.145 to 1.083, reducing the spatial gap in within-location

inequality to 0.214 log points, and thus by 22% (i.e., (0.276-0.214)/0.276≈ 0.22).
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E Identification

We prove identification of our model under the following assumption:

Assumption A1. We assume the following functional forms and normalizations:

1. The labor market matching function is given by M(V(ℓ),U(ℓ)) = A
√

V(ℓ)U(ℓ).

2. Workers’ flow utility function over housing and consumption is Cobb Douglas with share

parameters ω and 1− ω.

3. The ex post firm productivity distribution is given by Γ(y | p) = 1− y
− 1

p .

4. The production function is given by z(y,A(ℓ)) = yA(ℓ).

5. Land distribution R and housing expenditure share ω are observed.

6. Normalize the value of unemployment such that ρV U = 1.

Proof of Proposition 6. We need to identify the ranking of locations [ℓ, ℓ]; functions (Q, A,

B); the tail parameters p of the ex post productivity distribution; the separation rate schedule δ;

the relative matching efficiency κ and the overall efficiency of the matching function A; as well

as the parameters pertaining to the housing market (τ, h).

First, we can assign ℓ ∈ [ℓ, ℓ] to each location, based on any observed statistic that—according

to our model—is increasing in ℓ.

Second, µ(ℓ) (and thus p = µ(ℓ)) can be obtained from a location’s labor share, LS(ℓ) =

1− µ(ℓ), see Corollary 1.

Third, we obtain κ as described in the text. In turn, equation (25), which allows us to back

out the overall matching efficiency, is derived as follows. First, note that:

λE(ℓ) =
M(V(ℓ),U(ℓ))

(u(ℓ) + κ(1− u(ℓ)))L(ℓ)
κ

=M(V(ℓ),U(ℓ)) κ(1− u(ℓ))

u(ℓ) + κ(1− u(ℓ))

1

(1− u(ℓ))L(ℓ)

= AV(ℓ)
1
2
(
u(ℓ) + κ(1− u(ℓ))L(ℓ)

) 1
2

λE(ℓ)

δ(ℓ) + λE(ℓ)

δ(ℓ) + λU (ℓ)

λU (ℓ)

1

L(ℓ)

⇒ L(ℓ) = A2 δ(ℓ) + λU (ℓ)

δ(ℓ) + κλU (ℓ)

(
1

λU (ℓ)

)2

. (A.18)

Next, note that average firm size in location ℓ is given by l(ℓ) = (1− u(ℓ))L(ℓ), and thus,

L (ℓ) =

(
1 +

δ(ℓ)

λU (ℓ)

)
l(ℓ). (A.19)
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Equalizing (A.18) and (A.19), and solving for A gives (25) in the text, where we treat (λU (ℓ), u(ℓ), l(ℓ))

as observed for all ℓ.

Fourth, we obtain δ(ℓ) in each ℓ from local unemployment and job-finding rates, see (24).

Fifth, given µ(ℓ), we obtain the A-schedule from how average value added varies across space:

E[z(y,A(ℓ))|ℓ] = A(ℓ)E[y|ℓ] = A(ℓ) 1
1−µ(ℓ) ⇒ A(ℓ) = (1− µ(ℓ))E[z(y,A(ℓ))|ℓ].

Sixth, regarding the housing market parameters, we treat (u(ℓ), L(ℓ), d(ℓ),E[w(y, ℓ)|ℓ], T , ω)

as observed for all ℓ (where T is the economy-wide replacement rate of the unemployed) and

obtain (τ, h(·), wU (·)) from a system of three equations:

We use government budget constraint,

τd(ℓ)h(ℓ) = wU (ℓ)u(ℓ)L(ℓ), (A.20)

housing market clearing,

h(ℓ) = ω
wU (ℓ)

d(ℓ)
u(ℓ)L(ℓ) + ω

E[w(y, ℓ)|ℓ]
d(ℓ)

(1− u(ℓ))L(ℓ), (A.21)

and an equation obtained from the definition of replacement rate T

τ =
1

ω

T∑
ℓ̂(1−u(ℓ̂))L(ℓ̂)∑

ℓ̂ u(ℓ̂)L(ℓ̂)
+ T

. (A.22)

We computed (A.22) as follows. The replacement rate T satisfies

T
∑
ℓ

E[w(y, ℓ)|ℓ] (1− u(ℓ))L(ℓ)∑
ℓ̂(1− u(ℓ̂))L(ℓ̂)

=
∑
ℓ

wU (ℓ)
u(ℓ)L(ℓ)∑
ℓ̂ u(ℓ̂)L(ℓ̂)

,

where the RHS is the aggregate unemployment benefit. Note that

∑
ℓ

wU (ℓ)
u(ℓ)L(ℓ)∑
ℓ̂ u(ℓ̂)L(ℓ̂)

= τ
∑
ℓ

d(ℓ)h(ℓ)∑
ℓ̂ u(ℓ̂)L(ℓ̂)

=
ωτ

1− τω

∑
ℓ

E[w(y, ℓ)|ℓ](1− u(ℓ))L(ℓ)∑
ℓ̂ u(ℓ̂)L(ℓ̂)

,

where the first equality uses government budget constraint (A.20) and the second one uses a com-

bination of (A.20) and housing market clearing (A.21), which gives E[w(y, ℓ)|ℓ](1− u(ℓ))L(ℓ) =

(1− ωτ)d(ℓ)h(ℓ). Equalizing the last two equations and solving for τ yields (A.22).

Equation (A.22) pins down τ given the observed housing expenditure share and replacement

rate (ω, T ). For each location ℓ and given τ , equations (A.21)–(A.20) are then a system of two
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equations and two unknowns (wU (ℓ), h(ℓ)), which can be solved uniquely.

Last, to identify amenity schedule B, our starting point is the value of unemployment:

ρV U (ℓ) = d(ℓ)−ωB(ℓ)wU (ℓ) + b̃(ℓ) + d(ℓ)−ωB(ℓ)λU (ℓ)

[ ∫ w

wR(ℓ)

1− Fℓ(t)

δ(ℓ) + λE(ℓ)(1− Fℓ(t))
dt

]
,

(A.23)

which is the same as in the baseline model, except that unemployed workers receive unemployment

benefit wU (ℓ) and enjoy local amenity B(ℓ), but suffer from unemployment stigma, captured by

b̃(ℓ). Next, as before, reservation wage wR is implicitly defined by a condition that equalizes the

value of holding a job with the value of unemployment:

d(ℓ)−ωB(ℓ)wR(ℓ) =d(ℓ)−ωB(ℓ)wU (ℓ) + b̃(ℓ)

+ d(ℓ)−ωB(ℓ)(λU (ℓ)− λE(ℓ))

[ ∫ w

wR(ℓ)

1− Fℓ(t)

δ(ℓ) + λE(ℓ)(1− Fℓ(t))
dt

]
,

where, to satisfy Assumption 1, we now set b̃(ℓ) such that wR(ℓ) = z(y,A(ℓ)):

b̃(ℓ) = d(ℓ)−ωB(ℓ)

(
z(y,A(ℓ))− wU (ℓ)− (λU (ℓ)− λE(ℓ))

[ ∫ w

wR(ℓ)

1− Fℓ(t)

δ(ℓ) + λE(ℓ)(1− Fℓ(t))
dt

])
. (A.24)

Plug b̃(ℓ) back into V U in (A.23), and use a change of variable (to re-express Fℓ using Γℓ, where

Γℓ(y) = Γ(y|µ(ℓ))) and make use of the Pareto assumption on Γ to obtain

ρV U = d(ℓ)−ωB(ℓ)A(ℓ)

1 + 2
(
λE(ℓ)

)2 ∫ ∞

1
y
− 1

µ(ℓ)
1

µ(ℓ)
y
− 1

µ(ℓ)
−1
∫ y

1

dt[
δ(ℓ) + λE(ℓ)t

− 1
µ(ℓ)

]2dy
 ,

which allows us to back out B(ℓ) for each ℓ, given the normalization ρV U = 1 and given (A,µ)

(obtained above) as well as observed rental rates d and transition rates (λE , δ). □

F Estimation Results

Table A.3: Calibrated Parameters

Parameter Value Calibration

κ 0.253 monthly UE and EE transition rate (LIAB)
A 0.276 monthly UE transition rate (LIAB) and average firm size (GFSO)
ω 0.272 rent-to-income of main tenant households (GFSO)
τ 0.164 replacement rate of unemployed workers (SPIN)

Notes: For details on data sources and variable definitions, see Appendix C. To obtain the relative matching
efficiency of employed workers, κ, we use Germany-wide job-finding rates λE based on monthly EE transition
rates, counting a transition only for those workers who move to a new firm with higher wage.
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Table A.4: Determinants of Local TFP A(ℓ)

(1) (2) (3) (4) (5)
Trade Tax 0.1298∗ -0.0854

(0.0600) (0.0458)
Distance to Highway -0.0536∗∗∗ -0.0424∗∗∗

(0.0123) (0.0093)
% of Employees with a College Degree 0.8765∗∗∗ 0.6466∗∗∗

(0.1423) (0.1275)
Net Business Registration Intensity 0.0511∗∗∗ 0.0376∗∗∗

(0.0063) (0.0064)
N 257 257 257 257 257
R2 .0346 .153 .356 .274 .562

Notes: Data Sources: German Federal Statistical Office and Federal Office for Building and Regional Planning.
All regressions are run at the commuting-zone level and weighted by the number of establishments in each CZ.
Data is averaged across years for the period 2010-2017. The dependent variable in columns (1)-(5) is ‘Log Local
TFP, logA(ℓ)’ obtained from our estimation for each ℓ; see Section 6.3. See Appendices C.1 and C.3 for the
definition of the independent variables.

Figure A.2: Additional Parameter Estimates: Location Preference Schedule (left); Housing Supply (right)
Obtained from Residential Rents (middle)
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Notes: Data Source: The residential rent index (middle panel) was constructed by Ahlfeldt et al. (2022), see Appendix C.3,
and the red line indicates the linear (model) fit as a function of ℓ. Observations are weighted by the number of establishments
in each CZ, indicated by different sizes of the markers.

Figure A.3: Over-Identification: Transition Rates δ, P(EE|ℓ) and λU in Data and Model

Notes: Data Source: LIAB. For details on how job destruction rate δ (left panel) and UE transition rate λU (right panel) are constructed,
see Appendix C.2. In the middle panel, we display the probability of an EE transition, P(EE|ℓ). In the model, workers change jobs if
they receive an offer (which happens at rate λE(ℓ)) and if its wage exceeds their current one. To compute the data counterpart, we thus
multiply the observed EE probability by 0.597, which represents the fraction of EE moves associated with a wage gain. Red and gray lines
indicate the linear model and data fit of each variable as a function of ℓ. Observations are weighted by the number of establishments in
each CZ, indicated by different sizes of the markers. 95% confidence intervals are displayed in gray.
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Figure A.4: Model Fit: Additional Non-Targeted Moments

Notes: Data Sources: Left panel is based on BHP; right panel is based on price data for commercial properties 2012/13 from the German
Real Estate Association; see Appendices C.2 and C.3 for details. Red (gray) lines indicate the linear or quadratic model (data) fit of each
variable as a function of ℓ. Observations are weighted by the number of establishments in each CZ, indicated by different sizes of the
markers. 95% confidence intervals are displayed in gray.
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