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Throughout this Supplementary Material, we indicate figures, tables, and equations within

this appendix by SA.#. In turn, figures, tables, and equations from the main paper are denoted

by just 1,2,.... Figures, tables, and equations from the main appendix are denoted by A.#.

SA.1 Baseline Model: Derivations

SA.1.1 Alternative Formulation of Wage-Posting Problem

Firms’ wage-posting problem (4) has an alternative formulation:

J̃(y, ℓ) ≡ max
w≥wR(ℓ)

h(w, ℓ)J(y, w, ℓ) = max
w≥wR(ℓ)

λF δ

δ + λE(1− Fℓ(w))︸ ︷︷ ︸
=h(w,ℓ)

z(y,A(ℓ))− w

ρ+ δ + λE(1− Fℓ(w))︸ ︷︷ ︸
=J(y,w,ℓ)

(SA.1)

where h(w, ℓ) is the hiring rate of a firm posting w in location ℓ, and J(y, w, ℓ) is firm y’s

discounted flow profit when posting w in that location.54 Using firm size expression (SA.2)

(Appendix SA.1.2), we obtain (4).

SA.1.2 Firm Size

Firm size can be derived in two ways. First, we interpret the model’s firm size as the product of

the hiring rate and the expected duration of a match, which coincides with expression (3):

l(y, ℓ) = λF
(

λUu(ℓ)

λUu(ℓ) + λE(1− u(ℓ))
+

λE(1− u(ℓ))

λUu(ℓ) + λE(1− u(ℓ))
Gℓ(y)

)
︸ ︷︷ ︸

Hiring Rate h(y, ℓ)

1

ρ+ δ + λE(1− Γℓ(y))︸ ︷︷ ︸
Expected Match Duration

= λF
(

λUδ

λUδ + λEλU
+

λEλU

λUδ + λEλU
δ

δ + λE(1− Γℓ(y))
Γℓ(y)

)
1

ρ+ δ + λE(1− Γℓ(y))

= λF
δ

δ + λE(1− Γℓ(y))

1

ρ+ δ + λE(1− Γℓ(y))
(SA.2)

⇒ l(y, ℓ) = λF
δ

[δ + λE(1− Γℓ(y))]2
if ρ→ 0.

54The hiring rate of firm y in location ℓ is h(w, ℓ) ≡ λF
(

λUu(ℓ)

λUu(ℓ)+λE(1−u(ℓ))
+ λE(1−u(ℓ))

λUu(ℓ)+λE(1−u(ℓ))
Eℓ(w)

)
, considering that a

firm meets workers at rate λF from two pools: unemployment u(ℓ) (they will always accept the job), and employment 1− u(ℓ)
(they will accept if the new wage is higher than their current one). We denote the steady-state employment distribution by Eℓ,
where Eℓ(w) = δ Fℓ(w)

δ+λE(1−Fℓ(w))
(see (11) and (12)), so that h(w, ℓ) reduces to the expression in (SA.1).
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For a second way of deriving firm size, note that the matching rates of firms and workers need to

be consistent with each other, that is: λF = λUu + λE(1 − u) = λU δ
δ+λU

+ λE λU

δ+λU
= δ+λE

δ+λU
λU .

Plugging this into our definition of firm size above, we obtain l(y, ℓ) = λU (δ+λE)
δ+λU

δ
[δ+λE(1−Γℓ(y))]2

,

which—when the measure of vacancies and workers coincide in each ℓ—is equivalent to the

definition of firm size in Burdett and Mortensen (1998), who define it as the measure of workers

employed at firms of type y over the measure of firms of type y

(1− u)gℓ(y)

1 · γℓ(y)
=

λU

δ + λU
gℓ(y)

γℓ(y)
=

λU

δ + λU
δ(δ + λE)

(1 + λE(1− Γℓ(y)))2
.

SA.1.3 Wage Posting

Consider the firm’s expected profits from employing workers (4). By the envelope theorem:

∂J̃(y, ℓ)

∂y
= l(w(y, ℓ))

∂z(y,A(ℓ))

∂y
.

And so,

J̃(y, ℓ) = (z(y,A(ℓ))− w(y, ℓ))l(w(y, ℓ)) =

∫ y

y

∂z(t, A(ℓ))

∂y
l(w(t, ℓ))dt+ J̃(y, ℓ)

⇔ w(y, ℓ) = z(y,A(ℓ))−

∫ y

y

∂z(t, A(ℓ))

∂y

l(w(t, ℓ))

l(w(y, ℓ))
dt−

J̃(y, ℓ)

l(w(y, ℓ))
. (SA.3)

Then:

w(y, ℓ) = z(y,A(ℓ))−
[
δ + λE(1− Γℓ(y))

] [
ρ+ δ + λE(1− Γℓ(y))

]
×


∫

y

y

∂z(t,A(ℓ))
∂y

[δ + λE(1− Γℓ(t)] · [ρ+ δ + λE(1− Γℓ(t))]
dt


−
[
δ + λE(1− Γℓ(y))

]
·
[
ρ+ δ + λE(1− Γℓ(y))

] J̃(y, ℓ)
λF δ

. (SA.4)

Plugging (SA.4) into J̃ , we obtain:

J̃(y, ℓ) = λF δ

∫
y

y

∂z(t,A(ℓ))
∂y

[δ + λE(1− Γℓ(t)] · [ρ+ δ + λE(1− Γℓ(t))]
dt+ J̃(y, ℓ),

where J̃(y; ℓ) = l(w(y, ℓ))(z(y,A(ℓ))− wR(ℓ)).

Imposing Assumption 1.2 (zero profits of the least productive firm type in each location,

J̃(y, ℓ) = 0) as well as ρ = 0 (as stated in footnote 8), we obtain wage function (5) from (SA.4).
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SA.1.4 Land Price Schedule

Using integration by parts and Assumption 1.2 (i.e., zero profits of firm type y in all ℓ, implying

J̃(y, ℓ) = 0) problem (6) can be expressed as

max
ℓ

∫
∂J̃(y, ℓ)

∂y
(1− Γ(y|p))dy − k(ℓ).

The FOC reads ∫
∂2J̃(y, ℓ)

∂y∂ℓ
(1− Γ(y|p))dy =

∂k(ℓ)

∂ℓ
.

Solving this differential equation, when evaluated at the equilibrium assignment, yields land price

schedule k.

For the case with pure sorting given by matching function µ, solving for k(ℓ) yields:

k(ℓ) = k̄ +

∫ ℓ

ℓ

∫ y

y

∂2J̃(y, ℓ̂)

∂y∂ℓ

(
1− Γ(y|µ(ℓ̂))

)
dydℓ̂,

where k is a constant of integration. We anchor k by choosing k̄ such that the landowner whose

land commands the lowest price in equilibrium obtains zero.

SA.1.5 Land Market Clearing

We can derive market clearing under pure matching, R(ℓ) = Q(µ(ℓ)), from general land market

clearing condition (9),

R(ℓ) =

∫ ℓ

ℓ

∫ p

p
mℓ(ℓ̃|p̃)q(p̃)dp̃dℓ̃ =

∫ ℓ

ℓ

∫ p

p

m(ℓ̃, p̃)

q(p̃)

r(ℓ̃)

r(ℓ̃)
q(p̃)dp̃dℓ̃ =

∫ ℓ

ℓ

∫ p

p

r(ℓ̃)

q(p̃)
q(p̃)dMp(p̃|ℓ̃)dℓ̃

=

∫ ℓ

ℓ
µ′(ℓ̃)q(µ(ℓ̃))dℓ̃ = Q(µ(ℓ)),

where, to go from line 3 to line 4, we use the fact that under positive sorting Mp(p|ℓ) is a Dirac

measure, i.e., for each ℓ it puts positive mass only at p = µ(ℓ), and conjecture µ′(ℓ) = r(ℓ)/q(µ(ℓ)),

which then indeed materializes.
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SA.2 Additional Theoretical Results and Proofs: Baseline Model

SA.2.1 Proposition 1 for the Case of Negative Sorting

We complement the case of positive sorting from the text with the analysis of negative sorting.

In contrast to the case of positive sorting, which is optimal if J(p, ℓ) is strictly supermodular in

(p, ℓ), optimal sorting is negative if J(p, ℓ) is strictly submodular. The sufficient conditions for

NAM in terms of primitives can be summarized as follows:

Proposition SA1 (Negative Spatial Sorting of Firms). If z is strictly submodular, and either the

productivity gains from sorting into higher ℓ are sufficiently small, or the competition forces are

sufficiently small (sufficiently small φE), then any equilibrium features negative sorting in (p, ℓ).

Proof. The proof follows the steps of the one of Proposition 1, which is why we are brief.

To derive sufficient conditions under which negative sorting is optimal (Step 1), i.e., under which
∂2J(p,ℓ)
∂p∂ℓ is (strictly) negative, it suffices that the integrand of this cross-partial is negative for all

y ∈ [y, y] and strictly so for some set of positive measure of y. In turn, for this it is sufficient that

∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

∂z(y,A(ℓ))
∂y

<
2λE

δ + λE(1− Γℓ(y))

(
−∂Γℓ(y)

∂ℓ

)
.

Note that here, in contrast to the case of PAM, workers anticipate negative sorting ∂Γℓ(y)
∂ℓ > 0 and

so the RHS is negative, implying that the LHS of the inequality needs to be sufficiently negative.

Following similar steps as for PAM, the sufficient condition for NAM in terms of primitives reads:

∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

∂z(y,A(ℓ))
∂y

<
2λE

δ + λE(1− Γ(y|Q−1(1−R(ℓ)))

(
−∂Γ(y|Q

−1(1−R(ℓ)))

∂p

)(
− r(ℓ)

q(Q−1(1−R(ℓ)))

)
.

We again define uniform bounds (just swapping min and max due to the sign changes)

εN ≡ max
ℓ,y

∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

∂z(y,A(ℓ))
∂y

tN ≡ min
ℓ,y

(
−∂Γ(y|Q

−1(1−R(ℓ)))

∂p

)(
− r(ℓ)

q(Q−1(1−R(ℓ)))

)
.

A sufficient condition for J to be submodular in (ℓ, p) is therefore εN < 2φEtN .

In Step 2, we follow the same approach as for Proposition 1 to show that any optimal as-

signment satisfies NAM under the premise. Toward a contradiction, suppose that there is PAM

for at least one pair of firms and locations. It is then straightforward to show that under this
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conjecture, J is strictly submodular when evaluated at this pair. Thus, there exists a blocking

pair to PAM, rendering this assignment non-optimal.

In Step 3, as for Proposition 1, it follows that any equilibrium features negative sorting, where

we combine the insights from Steps 1 and 2 with the properties of the distributions (R,Q). □

Remark 1. Note that under the sufficient conditions for negative sorting in Proposition SA1,

∂k/∂ℓ < 0, as locations with higher ℓ are less attractive to firms. This ensures that ℓ is chosen

by a strictly lower p than ℓ̂ when ℓ > ℓ̂, so k(ℓ) is almost-everywhere differentiable. Also, k(ℓ)

is continuous since any jumps would lead to some profitable deviation by some ℓ near the jump.

Indeed, the land price is again unique up to an additive constant k̄, where in this case k̄ needs

to be high enough to ensure that the individual rationality condition for all landowners holds,

k(ℓ) ≥ 0 for all ℓ, i.e.,

k̄ ≥ −δλF

∫
ℓ

ℓ

∫
y

y

∂

(
∂z(y,A(ℓ̂))

∂y

[δ+λE(1−Γℓ̂(y))]
2

)
∂ℓ

(1− Γ(y|µ(ℓ̂)))dydℓ̂.

Remark 2. Under the conditions of Proposition SA1 existence of equilibrium follows from

the same steps as in Proposition 2, just replace supermodularity with submodularity of J and

note that for any ℓ > ℓ′, µ(ℓ) < µ(ℓ′). Uniqueness also follows from the same arguments as in

Proposition 2.

SA.3 Theoretical Results and Proofs: Model Extensions

In this appendix, we discuss several extensions of our baseline model. In Section SA.3.1, we

provide the proof of Proposition A2, which deals with the case of labor mobility and housing. In

Section SA.3.2, we endogenize location productivity A(ℓ) by allowing for spillovers across firms.

In Section SA.3.3, we allow firms to decide how many vacancies to post, which endogenizes the

local job finding/filling rate. In section SA.3.4, we consider endogenous land supply. In all these

extensions, we derive sufficient conditions for positive sorting of firms across space; the case of

negative sorting is similar and omitted for brevity.

SA.3.1 Labor Mobility and Residential Housing: Proof of Proposition A2

We here present the proof of Proposition A2, stated in Appendix B.

Proof. We will provide sufficient conditions for positive sorting to be an equilibrium.

SA-5



The expected value for firm p from settling in location ℓ is given by

J(p, ℓ) = λF (ℓ)δ

∫ y

y

∫ y

y

∂z(t,A(ℓ))
∂y

[δ + λE(ℓ)(1− Γℓ(t))]2
dtdΓ(y|p)− k(ℓ),

where λF (·) is an endogenous function and where we will denote more compactly:

Ĵ(p, ℓ) := δ

∫ y

y

∫ y

y

∂z(t,A(ℓ))
∂y

[δ + λE(ℓ)(1− Γℓ(t))]2
dtdΓ(y|p).

We can then compute the cross-partial derivative of J as

∂2J̄(p, ℓ)

∂ℓ∂p
=
∂2Ĵ(p, ℓ)

∂ℓ∂p
λF (ℓ) +

∂Ĵ(p, ℓ)

∂p

∂λF (ℓ)

∂ℓ
. (SA.5)

We apply integration by parts to Ĵ(p, ℓ) to obtain

Ĵ(p, ℓ) = δ

∫ y

y

∂z(y,A(ℓ))
∂y

[δ + λE(ℓ)(1− Γℓ(y))]2
(1− Γ(y|p))dy,

and then compute its derivatives:

∂

∂p
Ĵ(p, ℓ) = δ

∫ y

y

∂z(y,A(ℓ))
∂y

[δ + λE(ℓ)(1− Γℓ(y))]2

(
− ∂

∂p
Γ(y|p)

)
dy

∂

∂ℓ
Ĵ(p, ℓ) = δ

∫ y

y

( ∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ [δ + λE(ℓ)(1− Γℓ(y))]

[δ + λE(ℓ)(1− Γℓ(y))]3

−
∂z(y,A(ℓ))

∂y 2
(
λE(ℓ)

(
−∂Γℓ

∂ℓ

)
+ ∂λE(ℓ)

∂ℓ (1− Γℓ(y))
)

[δ + λE(ℓ)(1− Γℓ(y))]3

)
(1− Γ(y|p)) dy

∂2Ĵ(p, ℓ)

∂ℓ∂p
= δ

∫ y

y

( ∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ [δ + λE(ℓ)(1− Γℓ(y))]

[δ + λE(ℓ)(1− Γℓ(y))]3

−
∂z(y,A(ℓ))

∂y 2
(
λE(ℓ)

(
−∂Γℓ

∂ℓ

)
+ ∂λE(ℓ)

∂ℓ (1− Γℓ(y))
)

[δ + λE(ℓ)(1− Γℓ(y))]3

)(
−∂Γ(y|p)

∂p

)
dy.

Plugging these derivatives into (SA.5), we can write (SA.5) as a single integral. Then, a sufficient

condition for (SA.5) to be positive (i.e., a sufficient condition for J(p, ℓ) to be supermodular in

(p, ℓ)) is that this integrand is positive for all y ∈ [y, y] and strictly so for a set of y of positive

measure. Using −∂Γ(y|p)
∂p ≥ 0, we obtain the following sufficient condition for PAM:
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∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

∂z(y,A(ℓ))
∂y

>
2
(
λE(ℓ)

(
−∂Γℓ

∂ℓ

)
+ ∂λE(ℓ)

∂ℓ (1− Γℓ(y))
)

δ + λE(ℓ)(1− Γℓ(y))
−

∂λF (ℓ)
∂ℓ

λF (ℓ)
. (SA.6)

Define εP as the minimum of the LHS (as in the baseline model). It is strictly positive under

our assumptions and the premise. Under labor mobility, the RHS depends on endogenous market

tightness θ(ℓ) through meeting rates (λF (ℓ), λE(ℓ)). Thus, the sufficient conditions for PAM from

the baseline model are not readily applicable. Instead, we argue that the RHS is bounded. Thus,

(SA.6) holds for a large enough εP , made precise below. We proceed in 3 steps.

Step 1. We first show that the value of unemployment is increasing in ℓ for a fixed λU (and

thus a fixed λE = κλU ) if housing supply elasticity ξ is sufficiently large. We now unpack this

statement. Recall the value of unemployment in this extension of the model:

ρV U (ℓ) = d(ℓ)−ω

(
z(y,A(ℓ)) + λE(ℓ)

[ ∫ w(ℓ)

z(y,A(ℓ))

1− Fℓ(t)

δ + λE(ℓ)(1− Fℓ(t))
dt

])
.

Using the government budget constraint,

τd(ℓ)h(ℓ) = wU (ℓ)u(ℓ)L(ℓ),

the housing market clearing condition,

h(ℓ) = ω
wU (ℓ)

d(ℓ)
u(ℓ)L(ℓ) + ω

E[w(y, ℓ)|ℓ]
d(ℓ)

(1− u(ℓ))L(ℓ),

the local population size (for a derivation, see (A.19) in Appendix E)

L(ℓ) = A2 δ(ℓ) + λU (ℓ)

δ(ℓ) + κλU (ℓ)

(
1

λU (ℓ)

)2

,

as well as the postulated housing supply function, we obtain the following housing price:

d(ℓ) =

(
ω

1− ωτ
E[w(y, ℓ)](1− u(ℓ))L(ℓ)

)1/(1+ξ)

.

Denote by

d̃(ℓ) ≡ ω

1− ωτ
E[w(y, ℓ)](1− u(ℓ))L(ℓ).

As the wage is strictly increasing in firm productivity and thus in firm’s local rank, we can

express the value of unemployment as a function of the firm’s rank in the local productivity

distribution, R, instead of the firm’s wage rank. Setting t = w(R, ℓ) and using Fℓ(t) = R, a

change of variables yields:
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ρV U (ℓ) = d̃(ℓ)
− ω

1+ξ

(
z(y,A(ℓ)) + λE(ℓ)

[∫ 1

0

1−R
δ + λE(ℓ)(1−R)

∂w(R, ℓ)
∂R

dR
])

. (SA.7)

We now differentiate value (SA.7) wrt ℓ for a fixed λU (ℓ) = λU (and thus fixed λE = κλU ):

∂ρV U

∂ℓ

∣∣∣∣
λU (ℓ)=λU

= d̃(ℓ)−
ω

1+ξ ×
(
∂z

∂A

∂A(ℓ)

∂ℓ
+ λE

∫ 1

0

1−R
δ + λE(1−R)

∂2w(R, ℓ)
∂ℓ∂R

dR
)

(SA.8)

− ω

1 + ξ
d̃−

ω
1+ξ−1 ∂d̃(ℓ)

∂ℓ
×
(
z(y,A(ℓ)) + λE

[ ∫ 1

0

1−R
δ + λE(1−R)

∂w(R, ℓ)
∂R

dR
])

.

We will show that the first line is positive while the second line is negative. However, for large

enough ξ, the second line becomes sufficiently small, rendering the overall expression positive.

To see that the first line of (SA.8) is positive under the premise, denote firm y’s local pro-

ductivity rank by R = Γℓ(y). We apply a change of variables to wage function (5) (with

Γℓ(t) = x, γℓ(t)dt = dx) and take the cross-partial derivative wrt (R, ℓ):

w(R, ℓ) = z(Γ−1
ℓ (R), A(ℓ))− [δ + λE(1−R)]2

∫ R

0

∂z(Γ−1
ℓ (x),A(ℓ))

∂y

[δ + λE(1− x)]2
1

γℓ(Γ
−1
ℓ (x))

dx

∂2w(R, ℓ)
∂R∂ℓ

= 2
λE

δ

(
1 +

λE

δ
(1−R)

)
∂

∂ℓ

∫ Γ−1
ℓ (R)

y

∂z(t,A(ℓ))
∂y

(1 + λE

δ (1− Γℓ(t)))2
dt. (SA.9)

Suppose that Γ−1
ℓ (R) is increasing in ℓ (which is true if ∂

∂ℓΓℓ ≤ 0). In addition, suppose that, for

any given λE such that λE ≤ λE ≤ λ
E with λE = minℓ λ

E(ℓ) and λE = maxℓ λ
E(ℓ), the integrand

of (SA.9), ∂z(y,A(ℓ))
∂y /(1 + λE

δ (1 − Γℓ(y)))
2, is also increasing in ℓ. Both of these statements are

true under the sufficient conditions for PAM that we provide below, so that the wage function is

supermodular in (R, ℓ). This ensures that the first line of (SA.8) is positive.

In turn, to see that the second line of (SA.8) is negative note that

∂d̃(ℓ)

∂ℓ

∣∣∣∣
λU (ℓ)=λU

=
ω

1− ωτ
(1− u)L

∂E[w(y, ℓ)]
∂ℓ

∣∣∣∣
λU (ℓ)=λU

> 0.

But if the housing supply elasticity is large, ξ → ∞, the second line vanishes since, for fixed λU and λE ,

lim
ξ→∞

(
− ω

1 + ξ
d̃
− ω

1+ξ
−1∂d̃(ℓ)

∂ℓ

)
= 0× ∂d̃(ℓ)

∂ℓ
= 0.

Importantly, taking the same limit of the first line of (SA.8) shows that it remains positive:
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lim
ξ→∞

(
d̃(ℓ)−ω/(1+ξ)

(
∂z

∂A

∂A(ℓ)

∂ℓ
+ λE

∫ 1

0

1−R
δ + λE(1−R)

∂2w(R, ℓ)
∂ℓ∂R

dR
))

=

(
∂z

∂A

∂A(ℓ)

∂ℓ
+ λE

∫ 1

0

1−R
δ + λE(1−R)

∂2w(R, ℓ)
∂ℓ∂R

dR
)
.

Thus, by continuity of V U in ξ, there exists a finite ξ̂ such that for ξ > ξ̂, the positive effect

stemming from the first line of (SA.8) dominates the negative effect stemming from the second

line, which renders (SA.8) positive. Thus, the value of unemployment is increasing in ℓ for a fixed

λU (and thus a fixed λE = κλU ) if housing supply elasticity ξ is sufficiently large.

Step 2. A similar argument shows that for large enough ξ, V U is increasing in λU since its

positive effect on
(
∂z
∂A

∂A(ℓ)
∂ℓ + λE

∫ 1
0

1−R
δ+λE(1−R)

∂2w(R,ℓ)
∂ℓ∂R dR

)
dominates its (ambiguous) effect on

d̃(ℓ)−ω/(1+ξ) in (SA.7). Denote the level of the housing supply elasticity for which this is (weakly)

true by ξ̃, and so for ξ > ξ̃, V U is increasing in λU . Going forward we assume that ξ > max{ξ̂, ξ̃},

consistent with our premise that the housing supply elasticity is “large enough”.

Step 3. This discussion implies that for the equilibrium indifference condition of searching

workers to hold (i.e., the value of unemployment, V U , is equalized across ℓ), it must be that λU

(and thus λE) is decreasing in ℓ, and so θ is decreasing in ℓ while λF is increasing in ℓ. This

renders the second and third term on the RHS in (SA.6) negative.

For (SA.6) to hold, it then suffices that the first (and the only positive) term on the RHS—

given by 2λE(ℓ)
(
− ∂Γℓ

∂ℓ

)
/(δ+ λE(ℓ)(1− Γℓ(y)))—is bounded and “dominated” by the LHS. Note

that λE(·) is implicitly defined by (SA.7), where, in equilibrium, V U is a number that no longer

depends on ℓ. If there is PAM, µ′(ℓ) > 0, all functions in (SA.7), i.e. (d̃, z, ∂w/∂R), are

continuous in ℓ on ℓ ∈ [ℓ, ℓ] (see (SA.9)), and thus λE(·) inherits this property. It follows that

λE(·) is bounded and, as above, we denote its upper bound by λE = maxℓ λ
E(ℓ).

We now show that this implies that the first term on the RHS of (SA.6) is bounded from

above. Recall that −∂Γℓ(y)
∂ℓ = −∂Γ(y|µ(ℓ))

∂ℓ = −∂Γ(y|Q−1(R(ℓ)))
∂p

r(ℓ)
q(Q−1(R(ℓ)))

under (the conjecture of)

positive sorting and define

t̃P ≡ λ
E
max
y,ℓ

(
−∂Γℓ(y)

∂ℓ

)
= λ

E
(
max
y,ℓ

(
−∂Γ(y|Q

−1(R(ℓ)))

∂p

r(ℓ)

q(Q−1(R(ℓ)))

))
,

which is positive and well-defined given that Γ(y|p) is continuously differentiable in p, where both

p and y are defined over compact sets, and cdf’s Q and R are continuously differentiable on the

intervals [p, p] and [ℓ, ℓ] with strictly positive densities (q, r).

Then, (SA.6) holds if
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∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

∂z(y,A(ℓ))
∂y

>
2λE(ℓ)

(
−∂Γℓ(y)

∂ℓ

)
δ + λE(ℓ)(1− Γℓ(y))

for all (y, ℓ),

which holds if

∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

∂z(y,A(ℓ))
∂y

>
2λE(ℓ)

δ

(
−∂Γℓ(y)

∂ℓ

)
for all (y, ℓ),

which holds if εP > 21
δ t̃
P . Thus, positive sorting is optimal for firms if εP is large enough or if

1/δ is small enough. These conditions ensure that (i) inequality (SA.6) holds; and thereby that

(ii) Γ−1
ℓ (R) is differentiable and increasing in ℓ and the integrand of (SA.9) is increasing in ℓ, all

of which we had postulated above.

That an equilibrium with PAM exists then follows from the steps in the first part of Proposition

2, i.e., from the construction of a fixed point in Γℓ (where Γℓ satisfies positive sorting as shown

above), when appropriately adjusting J(p, ℓ) and k(ℓ) to this setting with labor mobility.

SA.3.2 Endogenous Spillovers

While we can pursue the analysis with a general spillover function, a natural specification is

A(ℓ) =

∫ y

y
(1− Γℓ(y))dy, (SA.10)

since, for y = 0, this is equivalent to A(ℓ) =
∫ y
y ydΓℓ(y) and productivity spillovers take the form

of the average firm productivity in a location. For concreteness, we will assume:

Assumption SA1. Productivity in location ℓ is endogenous and given by (SA.10).

Note that ex ante, before any sorting takes place, location index ℓ carries no information about

productivity as all locations are identical in this dimension. Thus, the ordering of ℓ is arbitrary,

but land distribution R over any given ordering [ℓ, ℓ] still indicates (ex ante) heterogeneity of

locations, whereby some of them are in scarce supply compared to others. Ex post, after firms

sort into locations, the index ℓ will also indicate heterogeneity in location productivity, determined

by the productivity of firms that settle there.

For ∂2J(p,ℓ)
∂p∂ℓ > 0 to obtain when agents conjecture positive sorting (and hence for positive

sorting to be optimal), we can again unpack (13) from the baseline model and obtain the following
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sufficient condition:

∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂z(y,A(ℓ))
∂y

∫ y

y
−∂Γℓ(y)

∂ℓ
dy

≥ 2λE

δ + λE(1− Γ(y|Q−1(R(ℓ)))

(
−∂Γ(y|Q

−1(R(ℓ)))

∂p

)
r(ℓ)

q(Q−1(R(ℓ)))
. (SA.11)

The main change relative to the baseline model is that differences in location productivity are

endogenous. In particular, under positive sorting in (p, ℓ), productivity A increases in ℓ because

these locations have access to better firms: ∂A(ℓ)
∂ℓ =

∫ y
y −∂Γℓ(y)

∂ℓ dy > 0. If this location productivity

advantage, along with the impact on firms’ marginal productivity, is large enough relative to the

cost of more severe poaching competition, highly productive firms (those with high-p) indeed

settle into high-ℓ locations—similar to the baseline model.

We now state the sorting result under endogenous spillovers formally. To this end, we re-define

the minimum productivity gains from sorting into high-ℓ locations as

εP ≡min
ℓ,y

∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂z(y,A(ℓ))
∂y

∫ y

y

(
−∂Γ(y|Q

−1(R(ℓ)))

∂p

)
r(ℓ)

q(Q−1(R(ℓ)))
dy

where A(ℓ) =
∫ y
y 1− Γ(y|Q−1(R(ℓ))dy. Note that under our assumptions εP > 0.

Proposition SA2. Suppose that Assumption SA1 holds. If z is strictly supermodular, and either

the productivity gains from sorting into higher ℓ, εP , are sufficiently large, or the competition

forces φE are sufficiently small, then there exists an equilibrium with positive sorting in (p, ℓ).

The proof of this result resembles Step 1 in the proof of Proposition 1 and the first part

(existence) of Proposition 2, where we note that any optimal Γℓ uniquely pins down the spillovers

A(ℓ) =
∫
(1− Γℓ(y))dy. To avoid repetition, we omit the details.

Remark. Note that while an equilibrium with positive sorting exists, it will no longer be unique

as far as the firm-location allocation is concerned. This is common under endogenous spillovers,

since the coordination of agents affects the equilibrium. Both positive or negative sorting in (p, ℓ)

can be self-sustained under identical primitives.

SA.3.3 Endogenous Vacancy Posting

To allow for vacancy posting, we assume that, when a firm of type p chooses a location ℓ, it also

decides how many vacancies, v(p, ℓ), to post subject to a vacancy posting cost c(v). Thus, firms
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decide about vacancies before drawing ex post productivity y.

With endogenous vacancy posting, meeting rates λF (ℓ) and λE(ℓ) depend on ℓ. We assume

that total meetings between workers and firms in location ℓ are given by

M(V(ℓ),U(ℓ)) = AV(ℓ)αU(ℓ)1−α, (SA.12)

where V(ℓ) is the measure of vacancies in ℓ, A is matching efficiency, and α is the elasticity of

matches with respect to vacancies. In turn, U(ℓ) is the measure of job searchers in ℓ. As before,

we define market tightness in location ℓ by θ(ℓ) = V(ℓ)
U(ℓ) . Then, the meeting rates are given by

λF (ℓ) = Aθ(ℓ)α−1, λU (ℓ) = Aθ(ℓ)α, and λE(ℓ) = κAθ(ℓ)α. We impose the following assumptions

on matching function and vacancy costs.

Assumption SA2.

1. Total meetings in location ℓ are given by (SA.12) with 0 < α < 1.

2. Vacancy posting cost c is C2 with c′ > 0, c
′′
> 0, c′(0) = 0, and limv→0

vc′′(v)
c′(v) := c > 0.

The total measure of vacancies, V(ℓ), is determined by the vacancy posting decision of

firms in ℓ:

V(ℓ) =
∫ p

p
v(p, ℓ)mp(p|ℓ)dp.

The effective measure of workers searching for a job in location ℓ is

U(ℓ) = u(ℓ) + κ(1− u(ℓ)) =
δ

δ + λU (ℓ)
+ κ

λU (ℓ)

δ + λU (ℓ)
.

Plugging both V(ℓ) and U(ℓ) into θ(ℓ) = V(ℓ)
U(ℓ) and simplifying yields

θ(ℓ)
δ + κAθ(ℓ)α

δ +Aθ(ℓ)α
= V(ℓ). (SA.13)

Equation (SA.13) implicitly determines the equilibrium local labor market tightness, θ(ℓ), as a

function of the measure of vacancies, V(ℓ), in any given market ℓ. Note that, under Assumption

SA2.1., θ is strictly increasing in V(ℓ). To see this, differentiate (SA.13) with respect to θ:

∂V(ℓ)
∂θ

s
= κA2(θα)2 + (κ+ 1 + α(κ− 1))Aδθα + δ2,

which is positive when α < 1 and achieves its minimum (equal to δ2) at θ = 0.
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The expected value of firm p of settling in location ℓ is now given by:

J(p, ℓ) = max
v≥0

{λF (ℓ)vĴ(p, ℓ)− c(v)} − k(ℓ)

with Ĵ(p, ℓ) = δ

∫ y

y

∫ y

y

∂z(t,A(ℓ))
∂y

[δ + λE(ℓ)(1− Γℓ(t))]2
dtdΓ(y|p).

We now state our main result of this extension of our model.

Proposition SA3. If z is strictly supermodular, the productivity gains from sorting into higher

ℓ are sufficiently large, and the competition forces are sufficiently small (i.e., 1/δ is sufficiently

small), then there exists an equilibrium with positive sorting in (p, ℓ).

Proof. Conjecture that positive sorting between firms and locations is optimal, as in the baseline

model. The firm’s first-order condition with respect to the vacancy posting rate is given by

λF (ℓ)Ĵ(p, ℓ) = c′(v(p, ℓ)). (SA.14)

This equation implicitly solves for the optimal vacancy posting rate of firm p in location ℓ, v(p, ℓ).

We can then compute expected value J(p, ℓ) and its derivatives as:

J̄(p, ℓ) = λF (ℓ)v(p, ℓ)Ĵ(p, ℓ)− c(v(p, ℓ))− k(ℓ)

∂J̄(p, ℓ)

∂p
=
∂Ĵ(p, ℓ)

∂p
λF (ℓ)v(p, ℓ)

∂2J̄(p, ℓ)

∂ℓ∂p
=
∂2Ĵ(p, ℓ)

∂ℓ∂p
λF (ℓ)v(p, ℓ) +

1

c′′(v(p, ℓ))

∂λF (ℓ)Ĵ(p, ℓ)

∂ℓ

∂Ĵ(p, ℓ)

∂p
λF (ℓ) +

∂Ĵ(p, ℓ)

∂p

∂λF (ℓ)

∂ℓ
v(p, ℓ).

(SA.15)

The second line uses the envelope theorem. In the third line, we use ∂v(p,ℓ)
∂ℓ = 1

c′′ (v(p,ℓ))

∂λF (ℓ)Ĵ(p,ℓ)
∂ℓ ,

obtained by differentiating (SA.14) with respect to ℓ. We will characterize conditions under which

(SA.15) is positive so that PAM between (p, ℓ) arises. To that end, we will specify conditions

under which, at p = µ(ℓ), ∂
2Ĵ(p,ℓ)
∂ℓ∂p > 0 in the first term (Step 1) and the remaining two terms are

also positive (Step 2). In each step, the conditions we specify will invoke the limit 1
δ → 0.

First, we derive a few useful equations. Applying integration by parts to Ĵ(p, ℓ) yields

Ĵ(p, ℓ) =
1

δ

∫ y

y

∂z(y,A(ℓ))
∂y

[1 + λE(ℓ)
δ (1− Γℓ(y))]2

(1− Γ(y|p))dy. (SA.16)

We can then compute the derivatives of Ĵ(p, ℓ) as
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∂

∂p
Ĵ(p, ℓ) =

1

δ

∫ y

y

∂z(y,A(ℓ))
∂y

[1 + λE(ℓ)
δ (1− Γℓ(y))]2

(
− ∂

∂p
Γ(y|p)

)
dy

∂

∂ℓ
Ĵ(p, ℓ) =

1

δ

∫ y

y

( ∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

[1 + λE(ℓ)
δ (1− Γℓ(y))]2

−
2λE(ℓ)∂z(y,A(ℓ))

∂y

(
−∂Γℓ

∂ℓ + α
∂θ(ℓ)
∂ℓ

θ(ℓ) (1− Γℓ(y))

)
δ[1 + λE(ℓ)

δ (1− Γℓ(y))]3

)
(1− Γ(y|p)) dy

∂2Ĵ(p, ℓ)

∂ℓ∂p
=

1

δ

∫ y

y

( ∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

[1 + λE(ℓ)
δ (1− Γℓ(y))]2

−
2λE(ℓ)∂z(y,A(ℓ))

∂y

(
−∂Γℓ

∂ℓ + α
∂θ(ℓ)
∂ℓ

θ(ℓ) (1− Γℓ(y))

)
δ[1 + λE(ℓ)

δ (1− Γℓ(y))]3

)(
−∂Γ(y|p)

∂p

)
dy.

Second, we make some observations for the case δ → ∞ (capturing small competition forces, 1
δ ).

The main difference compared with the baseline model is the endogeneity of market tightness

(and, thus, of λE(ℓ) and λF (ℓ)). Therefore, it is important to understand the behavior of local

market tightness. Note that, under PAM, V(ℓ) = v(µ(ℓ), ℓ), which follows from the definition of

V(ℓ). Based on (SA.13), we denote v(θ(ℓ)) := v(µ(ℓ), ℓ), where v is an increasing function of θ.

Moreover, we have limθ→0 v(θ) = 0, limθ→0
∂v(θ)
∂θ = 1, and limθ→0

v(θ)
θ = limθ→0 U(ℓ) = 1. Using

λF (ℓ) = Aθ(ℓ)α−1 and FOC (SA.14), we have

Ĵ(µ(ℓ), ℓ) = c′(v(θ(ℓ)))(Aθ(ℓ)α−1)−1. (SA.17)

If δ → ∞, then Ĵ(p, ℓ) → 0, which follows from the definition of Ĵ ; see (SA.16). Since c′(v(θ)) and

(θα−1)−1 are both strictly increasing in θ and zero at θ = 0, we conclude that limδ→∞ θ(ℓ) = 0

and limδ→∞ v(θ(ℓ)) = 0.

Differentiating (SA.17) with respect to ℓ we obtain (after some algebra) the elasticity of market

tightness under PAM. Plugging in the expressions for ∂
∂ℓ Ĵ(p, ℓ),

∂
∂p Ĵ(p, ℓ), and Ĵ(p, ℓ) from above gives

∂θ(ℓ)
∂ℓ

θ(ℓ)
=

1 +

2αλ
E(ℓ)
δ

∫ y
y

∂z(y,A(ℓ))
∂y (1−Γℓ(y))

[1+
λE(ℓ)

δ (1−Γℓ(y))]3
(1− Γ(y|µ(ℓ))) dy

δA−1θ(ℓ)2−α ∂v(θ(ℓ))∂θ c′′(v(θ(ℓ))) + (1− α)
∫ y
y

∂z(y,A(ℓ))
∂y

[1+
λE(ℓ)

δ (1−Γℓ(y))]2
(1− Γ(y|µ(ℓ))) dy


−1

×

−

∫ y
y

(
2λE(ℓ)

∂z(y,A(ℓ))
∂y

(
− ∂Γℓ

∂ℓ

)
δ[1+

λE(ℓ)
δ (1−Γℓ(y))]3

)
(1− Γ(y|µ(ℓ))) dy

δA−1θ(ℓ)2−α ∂v(θ(ℓ))∂θ c′′(v(θ(ℓ))) + (1− α)
∫ y
y

∂z(y,A(ℓ))
∂y

[1+
λE(ℓ)

δ (1−Γℓ(y))]2
(1− Γ(y|µ(ℓ))) dy

+

∫ y
y

∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

[1+
λE(ℓ)

δ (1−Γℓ(y))]2
(1− Γ(y|µ(ℓ))) dy + ∂µ(ℓ)

∂ℓ

∫ y
y

∂z(y,A(ℓ))
∂y

[1+
λE(ℓ)

δ (1−Γℓ(y))]2

(
− ∂
∂pΓ(y|µ(ℓ))

)
dy

δA−1θ(ℓ)2−α ∂v(θ(ℓ))∂θ c′′(v(θ(ℓ))) + (1− α)
∫ y
y

∂z(y,A(ℓ))
∂y

[1+
λE(ℓ)

δ (1−Γℓ(y))]2
(1− Γ(y|µ(ℓ))) dy

.
(SA.18)
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As δ → ∞, the first line converges to 1 and the second line vanishes. Focus on the third line. In

the denominator, the first term is

δA−1θ(ℓ)2−α
∂v(θ(ℓ))

∂θ
c′′(v(θ(ℓ))) = δc′(θ(ℓ))A−1θ(ℓ)1−α

c′′(v(θ(ℓ)))θ(ℓ)

c′(v(θ(ℓ)))
.

Using (SA.17), this is δĴ(µ(ℓ), ℓ) c
′′(v(θ(ℓ)))θ(ℓ)
c′(v(θ(ℓ))) , where c′′(v(θ(ℓ)))θ(ℓ)

c′(v(θ(ℓ))) converges to c under Assump-

tion SA2.2. Thus, we can characterize the limit of the elasticity of market tightness:

lim
δ→∞

∂θ(ℓ)
∂ℓ

θ(ℓ)
=

∫ y
y
∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ (1− Γ(y|µ(ℓ)))dy + ∂µ(ℓ)

∂ℓ

∫ y
y
∂z(y,A(ℓ))

∂y

(
− ∂
∂pΓ(y|µ(ℓ))

)
dy

[1− α+ c]
∫ y
y
∂z(y,A(ℓ))

∂y (1− Γ(y|µ(ℓ))) dy
(SA.19)

which, for all ℓ, is bounded from above by a positive and finite constant.

We now return to our task of signing (SA.15).

Step 1. We first show that ∂2Ĵ(p,ℓ)
∂p∂ℓ > 0 along the assignment p = µ(ℓ). It is sufficient to ensure

that the following inequality holds if δ → ∞:∫ y

y

∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

(
−∂Γ(y|µ(ℓ))

∂p

)
[1 + κAθ(ℓ)α

δ (1− Γ(y|µ(ℓ)))]2
dy

> 2
κAθ(ℓ)α

δ

∫ y

y

∂z(y,A(ℓ))

∂y

(
−∂Γ(y|µ(ℓ))

∂p

)(
∂µ(ℓ)

∂ℓ

(
−∂Γ(y|µ(ℓ))

∂p

)
+ α

∂θ(ℓ)
∂ℓ

θ(ℓ)
(1− Γ(y|µ(ℓ)))

)
dy.

This holds as δ → ∞ since the RHS vanishes (recall that we showed in (SA.19) that the elasticity

of market tightness is bounded from above as δ → ∞) while the LHS remains strictly positive.

Step 2. Next, we show that the sum of the last two terms in (SA.15) is positive when p = µ(ℓ).

After some algebra, this sum becomes

1

c′′(v(p, ℓ))

∂λF (ℓ)Ĵ(p, ℓ)

∂ℓ

∂Ĵ(p, ℓ)

∂p
λF (ℓ) +

∂Ĵ(p, ℓ)

∂p

∂λF (ℓ)

∂ℓ
v(p, ℓ)

=
∂Ĵ(p, ℓ)

∂p

(λF (ℓ))2

c′′(v(p, ℓ))

(
(α− 1)

∂θ(ℓ)
∂ℓ

θ(ℓ)

(
Ĵ(p, ℓ) +

c′′(v(p, ℓ))v(p, ℓ)

λF (ℓ)

)
+
∂Ĵ(p, ℓ)

∂ℓ

)
.

Evaluating this equation at p = µ(ℓ) and using (SA.17), we obtain

∂Ĵ(µ(ℓ), ℓ)

∂p

(λF (ℓ))2

c′′(v(θ(ℓ)))

(
(α− 1)

∂θ(ℓ)
∂ℓ

θ(ℓ)

(
1 +

c′′(v(θ(ℓ)))v(θ(ℓ))

c′(v(θ(ℓ)))

)
Ĵ(µ(ℓ), ℓ) +

∂Ĵ(µ(ℓ), ℓ)

∂ℓ

)
.

A sufficient condition for this to be positive if δ → ∞ is that the term in parentheses is
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positive, i.e.,

δ
∂Ĵ(µ(ℓ), ℓ)

∂ℓ
> (1− α)

∂θ(ℓ)
∂ℓ

θ(ℓ)
(1 + c)δĴ(µ(ℓ), ℓ),

where we used Assumption SA2.2. Observing that both δĴ(µ(ℓ), ℓ) and δ ∂J(p,ℓ)∂ℓ converge to some

positive numbers as we consider δ → ∞, the above inequality becomes in this limit

(
1− (1− α)(1 + c)

1− α+ c

)∫
∂2z(y,A(ℓ))

∂y∂A(ℓ)

∂A(ℓ)

∂ℓ
(1− Γ(y|µ(ℓ)))dy

>
(1− α)(1 + c)

1− α+ c

∂µ(ℓ)

∂ℓ

∫ y

y

∂z(y,A(ℓ))

∂y

(
− ∂

∂p
Γ(y|µ(ℓ))

)
dy,

where we substituted in (SA.19). This holds if

∫
∂2z(y,A(ℓ))

∂y∂A(ℓ)

∂A(ℓ)

∂ℓ
(1− Γ(y|µ(ℓ)))dy > (1− α)(1− c)

αc

∂µ(ℓ)

∂ℓ

∫ y

y

∂z(y,A(ℓ))

∂y

(
− ∂

∂p
Γ(y|µ(ℓ))

)
dy,

which is a condition on primitives (recall that µ(ℓ) = Q−1(R(ℓ))). As in our baseline model, we

can define the maximum of the RHS over ℓ as tV and the minimum of the LHS over ℓ as εV .

Then, the inequality holds if εV > tV , i.e., if complementarities of z in (y, ℓ) are large enough.

From Steps 1 and 2, we conclude that ∂2J̄(p,ℓ)
∂ℓ∂p is positive along p = µ(ℓ), which shows that

positive sorting is indeed optimal under the premise.

That an equilibrium with PAM exists then follows from the steps in the first part of Proposition

2, i.e., from the construction of a fixed point in Γℓ (where Γℓ satisfies positive sorting as shown

above), when appropriately adjusting J(p, ℓ) and k(ℓ) to this setting with vacancy posting. □

Remark. The economic intuition for Proposition SA3 is as follows. Labor market competition

is strong in high-ℓ locations not only because there are better firms than in low-ℓ regions (due to

positive sorting—as in the baseline model), but also because more productive firms tend to post

more vacancies. This new channel increases market tightness in good locations and hence further

discourages firms from settling there. Hence, competition in productive locations is amplified

by endogenous vacancy posting. To compensate for this stronger competition that arises from

both firm composition and congestion, we require the productivity gains from settling into high-ℓ

locations to be large enough or, stated differently, competition to be sufficiently muted (through

low 1/δ), so that PAM can be sustained in equilibrium.
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SA.3.4 Endogenous Land Supply

We first describe the environment and equilibrium. We then prove the sorting result.

We maintain from the baseline model that locations can be ranked by productivity and are

indexed by ℓ ∈ [ℓ, ℓ]. Contrary to the baseline model, we now bring to life the land developers,

who are initially heterogeneous in their ability to do this job ψ ∼ U [0, 1] (where we assume the

uniform distribution for convenience). Land developers are risk neutral.

Before entering the land market, developers face a binary investment choice with stochastic

returns: If they invest, they draw the land they need to develop from a stochastically better distri-

bution R1, compared to when they do not invest (in which case they draw from R0). Investment

is costly, and this cost negatively depends on the land developer’s ability ψ. The investment

cost is given by a function c, with c(ψ) ≥ 0 for all ψ, and where c is strictly decreasing and

differentiable on [0, 1]. Further, c(1) = 0 and limψ→0 c(ψ) = +∞.

After developers’ draw their location characteristic ℓ and develop the land, firms again match

pairwise with locations in a competitive market. If a land developer with ability ψ invests, then

his expected payoff is
∫
k(ℓ)dR1(ℓ)−c(ψ); in turn, it is

∫
k(ℓ)dR0(ℓ) if he does not invest (where k

is again the land price associated with ℓ). In turn, the firms’ payoffs are as in the baseline model.

We now describe the equilibrium. Let a : [0, 1] → {0, 1} be a measurable investment function,

where a(ψ) = 0 if a developer with ability ψ does not invest, and a(ψ) = 1 if he does. For a

given a, the distribution of land ℓ is R(·, a), a mixture of R1 and R0 with weights given by the

measure of developers who invest and do not invest (see below).

An equilibrium consists of an investment function a plus the equilibrium objects from the

baseline model (w, k,m,Γℓ, Gℓ, u, wR) such that land developers invest optimally in addition to

the usual equilibrium requirements. That is, for all ψ, a(ψ) = 1 if and only if the net benefit

from investing is higher than from not investing, U1 − c(ψ) ≥ U0, where

Ui =

∫
k(ℓ)dRi(ℓ), i = 0, 1;

is the expected utility from investment choice i = 0, 1, taking investment risk into account. We

construct an equilibrium as follows. Consider the investment stage. For any investment choices

of other developers and for the corresponding land price function in the matching stage, the

developer invests if and only if U1 − c(ψ) ≥ U0. Since the land price function k strictly increases

in ℓ in the positive sorting equilibrium that we aim to construct, and since R1 strictly FOSD R0,
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we have that U1 − U0 > 0. Thus, in any equilibrium we have

a(ψ) =

 1 if ψ ≥ ψ∗

0 if ψ < ψ∗,

where ability threshold ψ∗ ∈ (0, 1) characterizes a, and where wlog we have set a(ψ∗) = 1. Thus,

given the binary nature of the investment decision, in any equilibrium a is characterized by an

ability threshold above which developers optimally decide to invest.

For any given investment function a (summarized by threshold ψ∗), we obtain the endogenous

land distribution (recall that we assumed that ψ is uniformly distributed):

R(ℓ, ψ∗) = (1− ψ∗)R1(ℓ) + ψ∗R0(ℓ),

and the Walrasian equilibrium of the land market is (µ(·, ψ∗), k(·, ψ∗)), where µ(ℓ, ψ∗) = Q−1(R(ℓ, ψ∗))

under positive sorting and

k(ℓ, ψ∗) = δλF
∫ ℓ

ℓ

∫ y

y

∂
∂z(y,A(ℓ̂))

∂y

[δ+λ(1−Γℓ̂(y))]
2

∂ℓ
(1− Γ(y|µ(ℓ̂, ψ∗)))dydℓ̂.

The conditions for sorting remain similar to those in the baseline model. To see this, note

that the firm’s location choice problem (when anticipating PAM) is:

max
ℓ
J(p, ℓ;ψ∗) = δλF

∫ y

y

∫ y

y

∂z(t,A(ℓ))
∂y

[δ + λ(1− Γ(t|µ(ℓ, ψ∗)))]2
dtdΓ(y|p)− k(ℓ, ψ∗),

where it takes the economy-wide investment threshold ψ∗ and thus land supply R as given. Using

the same definition for εP as in the baseline model, we now prove the main result of this extension.

Proposition SA4. If z is strictly supermodular, and either the productivity gains from sorting

into higher ℓ, εP , are sufficiently large, or the competition forces φE are sufficiently small, then

there exists an equilibrium with positive sorting in (p, ℓ).

Proof. Cross-differentiating J(p, ℓ;ψ∗) w.r.t. (p, ℓ) yields again:

∂2J(p, ℓ;ψ∗)

∂p∂ℓ
= δλF

∫ y

y

( ∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ [δ + λE(1− Γ(y|µ(ℓ, ψ∗))]2

[δ + λE(1− Γ(y|µ(ℓ, ψ∗)))]
4

+

∂z(y,A(ℓ))
∂y 2

[
δ + λE(1− Γℓ(y))

]
λE ∂Γ

∂p
∂µ(ℓ,ψ∗)

∂ℓ

[δ + λE(1− Γ(y|µ(ℓ, ψ∗)))]
4

)(
−∂Γ(y|p)

∂p

)
dy

SA-18



only that the matching function now depends on ψ∗. In order for this expression to be (strictly)

positive, it suffices that the integrand is positive for all y ∈ [y, y] and strictly so for some set of

y of positive measure. So, it suffices that for all (e, ℓ, ψ∗)

∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

∂z(y,A(ℓ))
∂y

>
2λE

δ + λE(1− Γ(y|µ(ℓ, ψ∗)))

(
−∂Γ
∂p

∂µ(ℓ, ψ∗)

∂ℓ

)
.

A sufficient condition for this inequality to hold is:

min
ℓ,y

∂2z(y,A(ℓ))
∂y∂A(ℓ)

∂A(ℓ)
∂ℓ

∂z(y,A(ℓ))
∂y

>

2λE

δ
max
ℓ,y,ψ∗

(
−∂Γ(y|Q

−1(ψ∗R0(ℓ) + (1− ψ∗)R1(ℓ)))

∂p

ψ∗r0(ℓ) + (1− ψ∗)r1(ℓ)

q(Q−1(ψ∗R0(ℓ) + (1− ψ∗)R1(ℓ)))

)
.

We define εP as in the baseline model. Note that it exists based on the same arguments as before.

Moreover, let

tP := max
ℓ,y,ψ∗

(
−∂Γ(y|Q

−1(ψ∗R0(ℓ) + (1− ψ∗)R1(ℓ)))

∂p

ψ∗r0(ℓ) + (1− ψ∗)r1(ℓ)

q(Q−1(ψ∗R0(ℓ) + (1− ψ∗)R1(ℓ)))

)
> 0,

which is positive and finite since the function we are maximizing is continuous in (ℓ, y, ψ∗), where

(ℓ, y, ψ∗) are all defined over compact sets (recall that ψ∗ ∈ [0, 1]). Hence, the familiar sufficient

condition renders J supermodular in this context: εP > 2φEtP . A sufficiently high εP or low φE

makes positive sorting optimal—as in the baseline model.

That an equilibrium with PAM exists then follows from the steps in the first part of Proposition

2, i.e., from the construction of a fixed point in Γℓ (where Γℓ satisfies positive sorting as shown

above), when appropriately adjusting J(p, ℓ) and k(ℓ) to this setting with endogenous land. □

Remark. Note that despite the stylized setting, this extension captures the important feature

that the benefits of land investment—and therefore land supply—are guided by land price k(·),

which in turn reflects the demand for land with different characteristics. For instance, if k is

strongly increasing in ℓ, reflecting that high-quality land is relatively scarce, this encourages

more developers to invest and so the land supply in high-ℓ locations increases, which affects land

distribution R. So, despite consistently focusing on the case of pure positive sorting in (ℓ, p),

one could use this extension to analyze how land supply R changes with a subsidy to invest

(captured by a shift or curvature change of the investment cost function) or with varying land

demand (captured by changes in Q) or productivity (A). Changes in R will then affect the

matching between firms and locations, and thus spatial sorting and inequality.
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SA.4 Additional Predictions and Evidence on Firm Sorting

We now provide additional results, which can be used to detect firm sorting in the data and

complements our analysis on local labor shares. We first show that spatial firm sorting increases

productivity dispersion in high-ℓ locations (Proposition SA5 and Corollary SA1). Second, we

show that firm sorting has testable implications for the relationship between the local and the

global (economy-wide) productivity rank of firms (Proposition SA6). We provide empirical sup-

port for both.

SA.4.1 Spatial Firm Sorting: Local Productivity Dispersion

Theory. We first show that positive firm sorting also implies that high-ℓ locations have more

productivity dispersion, captured by the quantile ratio Γ−1
ℓ (t′′)/Γ−1

ℓ (t′) (where t′, t′′ ∈ (0, 1) and

t′′ > t′), which is increasing in ℓ. This result applies to productivity distributions Γ(y|p) in which

stochastic dominance wrt p is more pronounced for higher y.

Proposition SA5 (Firm Sorting & Local Productivity Dispersion). If there is positive firm

sorting across space, then the quantile ratio of local productivity, Γ−1
ℓ (t′′)/Γ−1

ℓ (t′), is increasing

in ℓ, provided that the elasticity of (−Γp/Γy) with respect to y exceeds 1.

Proof. We provide conditions under which the quantile ratio of the productivity distribution

Γ−1
ℓ (t′′)

Γ−1
ℓ (t′)

=
Γ−1(t′′, µ(ℓ))

Γ−1(t′, µ(ℓ))

is increasing in ℓ, where Γ−1(t, µ(ℓ)) is the t-th quantile, t ∈ (0, 1), pertaining to productivity

distribution Γ(y|µ(ℓ)). To simplify notation, we define Ψ(t, µ(ℓ)) ≡ Γ−1(t, µ(ℓ)), and so

Ψ(t′′, µ(ℓ))

Ψ(t′, µ(ℓ))
=

Γ−1(t′′, µ(ℓ))

Γ−1(t′, µ(ℓ))
.

We aim to show under which conditions this ratio is increasing in ℓ or, stated differently, conditions

under which Ψ(t, µ(ℓ)) is log-supermodular in (t, ℓ):

µ′(ℓ)
(
ΨtpΨ−ΨtΨp

)
≥ 0.

This holds if:
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µ′(ℓ)

((
ΓyyΓp − ΓpyΓy

Γ2
y

)
Ψ+

(
Γp
Γy

))
≥ 0

⇔ ΓyyΓp − ΓpyΓy
Γ2
y

≥
(
− Γp

Γy

)
1

y

⇔
∂
(
− Γp/Γy

)
∂y

y(
− Γp/Γy

) ≥ 1

where to go from the first to the second line, we use PAM, µ′(ℓ) > 0 and Ψ = y. □

In Corollary SA1, we show that the Pareto assumption satisfies the distributional requirement

of Proposition SA5 and renders positive sorting not only sufficient but also necessary for the result.

Corollary SA1 (Firm Sorting & Local Productivity Dispersion: Pareto Case). If and only

if there is positive firm sorting across space, then both the quantile ratio of local productivity,

Γ−1
ℓ (t′′)/Γ−1

ℓ (t′), and the quantile difference of the log value added distribution, Π−1
ℓ (t′′)−Π−1

ℓ (t′)

are increasing in ℓ (where we denote by Πℓ(z) the cdf of log value added log(z)).

Proof. In Proposition SA5, we saw that the quantile ratio of productivity, Γ−1
ℓ (t′′)/Γ−1

ℓ (t′), is

increasing in ℓ if (
ΓyyΓp − ΓpyΓy

Γ2
y

)
Ψ+

(
Γp
Γy

)
≥ 0.

If y ∼ Pareto(1, 1/p), i.e., Γ(y|p) = 1− (1/y)1/p, then this expression becomes

(
ΓyyΓp − ΓpyΓy

Γ2
y

)
y +

(
Γp
Γy

)
=
y

p
> 0.

And therefore

µ′(ℓ)

(
ΓyyΓp − ΓpyΓy

Γ2
y

)
y +

(
Γp
Γy

)
= µ′(ℓ)

y

p
> 0

if and only if µ′(ℓ) > 0, proving the claim.

Further, regarding the claim about log value added, first note that if y is Pareto distributed

as specified then log(z) follows an exponential distribution. To see this note that

log z(y,A(ℓ)) = log(A(ℓ)) + log y,

where log y ∼ exp(1/p) due to the assumption that the location parameter in y’s Pareto distri-
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bution equals 1. Then, conditional on ℓ, A(ℓ) is a constant and so

Πℓ(z̃) ≡ P[log(z) ≤ z̃] = P[ log y ≤ z̃ − log(A(ℓ))]

= 1− e
−(z̃−log(A(ℓ))) 1

µ(ℓ) .

Then, the t-th quantile of the log value added distribution is given by,

Π−1
ℓ (t) = log(A(ℓ))− µ(ℓ) log(1− t),

and the difference of two quantiles corresponding to t′′ > t′ is given by:

Π−1
ℓ (t′′)−Π−1

ℓ (t′) = log(A(ℓ))− µ(ℓ) log(1− t′′)− (log(A(ℓ))− µ(ℓ) log(1− t′)),

= µ(ℓ)(log(1− t′)− log(1− t′′)).

It follows that
∂(Π−1

ℓ (t′′)−Π−1
ℓ (t′))

∂ℓ
> 0 ⇔ µ′(ℓ) > 0.

□

Firm-Level Evidence. We provide additional evidence on positive firm sorting using firm-level

productivity indicators. We consider this analysis as only supplementary to our evidence based

on local labor shares since the firm-level productivity data is based on the Establishment Panel,

which has a relatively small sample size (10,719 firms). This also implies that we cannot estimate

local productivity distributions at the level of 257 CZs but have to aggregate these data to the 38

NUTS2 regions. Moreover, since the Establishment Panel is a survey, the data is relatively noisy.

Within-Location Dispersion of Productivity and Sales. Corollary SA1 (Appendix

SA.4.1) suggests a test of positive firm sorting based on how the local dispersion of (log) output per

worker varies across space. If and only if sorting is positive, then high-ℓ locations are characterized

by more dispersion in output per worker.

When assessing this prediction we measure output per worker at the firm level by sales per

worker.55 Figure SA.1 (left) plots the difference of the 90% and 10% quantile of the distribution

of log sales per worker. Based on Corollary SA1, the positive relationship between sales dispersion

and ℓ indicates positive firm sorting across space.
55We prefer sales per worker as our measure of z, because the data on intermediate inputs (and hence value added) are noisy.

However, the results based on value added are very similar.
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Figure SA.1: Spatial Firm Sorting: Evidence from Establishment Panel
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Notes: Data source: Establishment Panel. The left panel shows a scatter plot between the log difference of the 90th and
10th quantile of firm sales per worker against local log GDPpc. We compute the 90th and 10th percentiles using frequency
weights, where we weigh each firm observation by the number of firms in the same size class (see footnote 56). In the right
panel, we plot −1/βℓ from regression (SA.20), where z(y,A(ℓ)) in the dependent variable is measured as sales per worker. For
each location ℓ, quantile k is taken from the local firm productivity distribution, where we use the same frequency weights
as those in the left panel. Coefficient, βℓ, is weighted by the number of firms in each NUTS2 region. The size of the markers
indicates the size of the region (number of firms in each NUTS2 region).

Pareto Tails of Firm Productivity. When assessing firm sorting based on the spatial

variation in local labor shares or in the dispersion of sales per worker, we implicitly assume that

firm productivity y in each ℓ follows a Pareto distribution with shape parameter 1/p (which

in equilibrium becomes 1/µ(ℓ)), see Corollaries 1 and SA1. Positive sorting of firms across

locations means that µ is increasing and thus richer locations have a thicker Pareto tail of the

local productivity distribution. To assess this prediction, we proxy firm productivity by sales per

worker and estimate the Pareto shape parameter at the NUTS2 regional level by implementing

the following regression at the local level

log(1− P[z(y,A(ℓ)) ≤ k]) = αℓ + βℓ log(k) + ϵ, (SA.20)

where k = z(1), z(2), · · · , z(nℓ−1), z(nℓ), and (z(j), nℓ) are the j-th order statistics and the number

of firms in region ℓ, respectively.56

Under the assumptions of multiplicative technology and Pareto productivity distributions

as well as the validity of our productivity proxy, regression coefficient βℓ captures the Pareto

shape parameter 1
µ(ℓ) . The R2 of these regional Pareto regressions varies between 0.7 and 0.9,

which suggests that the Pareto assumption is reasonable. Furthermore, the positive slope of the
56Note that the Establishment Panel samples firms based on firm size and industry across Germany. The sample is not

representative at the regional level. To obtain a representative empirical distribution of firm productivity, we weigh each
observation with the local proportion of firms within the same size class, obtained from the German Federal Statistical Office
that provides the number of firms with fewer than 10, 10-50, 50-250, more than 250 employees at the district-year level.
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estimated µ(ℓ) against (log) GDP per capita, as shown in the right panel of Figure SA.1, is

consistent with positive firm sorting across space.

SA.4.2 Spatial Firm Sorting: Global vs. Local Rank

We now devise an additional test for the presence of firm sorting in the data. We show that firm

sorting has distinct implications for the relationship between the local and the global (economy-

wide) productivity rank of firms. In contrast to our “tests” of firm sorting discussed above, this

section does not rely on any parametric restrictions on local firm productivity distributions.

Theory. We define the difference between firm y’s global rank and its (average) local rank as

D(y) :=

∫ ℓ

ℓ
Γℓ(y)r(ℓ)dℓ︸ ︷︷ ︸

Global Rank

−
∫ ℓ

ℓ
Γℓ(y)

γ(y|µ(ℓ))r(ℓ)∫ ℓ
ℓ γ(y|µ(ℓ̂))r(ℓ̂)dℓ̂

dℓ.

︸ ︷︷ ︸
Average Local Rank

The global rank reflects the firm’s position in the economy-wide productivity ranking. By

contrast, the local rank reflects the firm’s position in the productivity ranking of its location.

It takes into account that firms of a given type y can be found in all locations but, because of

sorting, they are more prevalent in some locations than others. We therefore average the local

rank of firm type y, Γℓ(y), across locations using the density that describes the distribution of y

across space (see the proof of Proposition SA6 for the detailed derivation of the local rank).

Spatial sorting by firms has specific implications for the shape of D. If sorting is monotone,

there is a concentration of highly productive firms in some locations and of much less productive

firms in others. Thus, the local rank of highly productive firms is low relative to their global

rank, which yields D > 0. The opposite is true for the least productive firms who are surrounded

by other low-productivity peers in their locations. As a result, their local rank tends to be high

compared with their global rank, with D < 0. Finally, D(y) = D(y) = 0 because the worst (best)

firm economy-wide is also the worst (best) firm in any local labor market. Note that the difference

between global and local ranks is absent (i.e., D(y) = 0 for all y) if there is no firm sorting. Figure

SA.2 depicts D for a parametric example with spatial sorting.57

We now show that the shape depicted in Figure SA.2 is a robust feature of spatial firm sorting.

To do so, we maintain the following regularity assumption.
57Suppose that R(ℓ) = ℓ−a

b−a
, Q(p) = p−a

b−a
, and Γ(y|p) = yp for b > a > 0, p ∈ [a, b] and ℓ ∈ [a, b]. Thus, under PAM, µ(ℓ) = ℓ

and Γℓ(y|µ(ℓ)) = yµ(ℓ) = yℓ. If a = 1 and b = 2, we can solve for the zeros of D in closed form, giving the unique interior zero at
y∗ = 0.5; see Figure SA.2. Note that this example does not satisfy Assumption SA3 for γ(y|p), which however is only sufficient
(not necessary) for the result.
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Figure SA.2: Spatial Firm Sorting and the Difference between Global and Local Productivity Ranks
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Assumption SA3. Both γ(y|p) and γ(y|p) are not constant in p.

We can then show the following results.

Proposition SA6 (Firm Sorting and the Difference between Global and Local Productiv-

ity Ranks). Suppose Assumption SA3 holds.

i. If there is no spatial firm sorting, Γℓ′ = Γℓ′′ for all ℓ′ ̸= ℓ′′, then D(y) = 0 for all y ∈ [y, y].

ii. If there is spatial firm sorting, Γℓ′ ̸= Γℓ′′ for almost all ℓ′ ̸= ℓ′′, then D(y) = 0 for y = {y, y};

in turn, there exists a firm type y∗ ∈ (y, y) such that for all y < y∗, D(y) < 0, and a type

y∗∗ ∈ (y, y) with y∗∗ ≥ y∗ such that for all y > y∗∗, D(y) > 0.

Proof. Recall that, under pure monotone sorting (PAM or NAM), we define:

D(y) :=

∫ ℓ

ℓ
Γℓ(y)r(ℓ)dℓ−

∫ ℓ

ℓ
Γℓ(y)

γ(y|µ(ℓ))r(ℓ)∫ ℓ
ℓ γ(y|µ(ℓ̂))r(ℓ̂)dℓ̂

dℓ.

Our definition of local rank reflects the average local rank of any given firm y:
∫ ℓ̄
ℓ Γℓ(y)nℓ(ℓ|y)dℓ,

where nℓ(ℓ|y) is defined as the (endogenous) location density conditional on y,

nℓ(ℓ|y) :=
n(ℓ, y)

n(y)
=︸︷︷︸

PAM/NAM

γ(y | µ(ℓ))q(µ(ℓ))µ′(ℓ)∫ ℓ̄
ℓ γ(y | µ(ℓ̂))q(µ(ℓ̂))µ′(ℓ̂)dℓ̂

=
γ(y|µ(ℓ))r(ℓ)∫ ℓ̄

ℓ γ(y|µ(ℓ̂))r(ℓ̂)dℓ̂
,

and where n(ℓ, y) := γ(y, µ(ℓ))µ′(ℓ) = γ(y|µ(ℓ))q(µ(ℓ))µ′(ℓ) is the joint pdf of (ℓ, y) with cor-

responding marginal pdf, n(y) :=
∫ ℓ
ℓ n(ℓ, y)dℓ =

∫ ℓ
ℓ γ(y|µ(ℓ))q(µ(ℓ))µ

′(ℓ)dℓ; in turn, γ(y, p) is

the pdf corresponding to the joint cdf Γ(y, p).

Part i. follows from the premise of no sorting, i.e., Γℓ′(y) = Γℓ′′(y) = Γ(y),∀ℓ′, ℓ′′ ∈ [ℓ, ℓ], in which

SA-25



case

D(y) = Γ(y)

(∫ ℓ

ℓ
r(ℓ)dℓ−

∫ ℓ

ℓ
nℓ(ℓ|y)dℓ

)
= 0.

Part ii. The first statement, i.e. D(y) = D(y) = 0, also follows straight from the definition of D.

The second statement follows from examining the slope of D at y = {y, y}.

Differentiate D wrt y to obtain

D′(y) =

∫
γ(y|µ(ℓ)))r(ℓ)dℓ

−

{(∫ (
γ(y|µ(ℓ))2 + Γℓ(y)

∂γ(y|µ(ℓ))
∂y

)
r(ℓ)dℓ

) (∫
γ(y|µ(ℓ))r(ℓ)dℓ)

)
(∫
γ(y|µ(ℓ))r(ℓ)dℓ

)2
−

(∫
Γℓ(y)γ(y|µ(ℓ))r(ℓ)dℓ)

) (∫ ∂γ(y|µ(ℓ))
∂y r(ℓ)dℓ)

)
(∫
γ(y|µ(ℓ))r(ℓ)dℓ

)2
}
.

Evaluate this expression at y = {y, y}

D′(y)
∣∣
y=y

=

(∫
γ(y|µ(ℓ))r(ℓ)dℓ

)2 − (∫ γ(y|µ(ℓ))2r(ℓ)dℓ)∫
γ(y|µ(ℓ))r(ℓ)dℓ

=
−Varr[γ(y|µ(ℓ))]∫
γ(y|µ(ℓ))r(ℓ)dℓ

D′(y)
∣∣
y=y

=

(∫
γ(y|µ(ℓ))r(ℓ)dℓ

)2 − (∫ γ(y|µ(ℓ))2r(ℓ)dℓ)∫
γ(y|µ(ℓ))r(ℓ)dℓ

=
−Varr[γ(y|µ(ℓ))]∫
γ(y|µ(ℓ))r(ℓ)dℓ

,

where Varr is our notation for the variance of a random variable, taking land distribution r into

account. Both expressions are strictly negative if Varr[γ(y|µ(ℓ))] > 0 and Varr[γ(y|µ(ℓ))] > 0,

which is the case under Assumption SA3.

Since D starts at zero and first decreases, it is strictly negative for small y > y; and since it

ends at zero in a decreasing manner, it must be that for high y < y it is strictly positive. Hence,

there must be at least one y∗ ∈ (y, y) such that D(y∗) = 0 and at that point D crosses zero

from below. If this interior crossing is unique, then y∗ = y∗∗. In turn, if D has several interior

zeros, then the first one, y∗, and the last one, y∗∗ > y∗, share this ‘crossing-from-below’ property,

proving the claim. □

Evidence. To detect spatial sorting empirically, Proposition SA6 and Figure SA.2 suggest a

simple test: If there is monotone spatial sorting, there is an S-shaped relationship between the

difference in firms’ global and local ranks, D(y), and productivity y. In contrast to our other

“tests” of firm sorting in this appendix, this one does not rely on any parametric restriction on

the local firm productivity distributions (i.e., we can dispense with the Pareto assumption).
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Implementing this test in practice, requires a measure of firm productivity y. Measuring y

empirically is complicated by the fact that firms—according our theory—are sorted spatially and,

thus, their output per worker z depends not only on their productivity y but also on location

productivity A(ℓ). To purge firm output per worker z from local productivity A(ℓ), we exploit

the fact that under the assumption of common support, output per worker of the least productive

firm in location ℓ is given by yA(ℓ) and hence should only reflect A(ℓ). In practice, we therefore

measure y as sales per worker divided by the 1% quantile of the sales per worker distribution in

location ℓ.58

In Figure SA.3, we plot the relationship between D(y) and y in the data. On the horizontal

axis, we order firms by their global productivity rank and categorize them into 50 equally sized

bins (based on percentiles of the global productivity distribution). On the vertical axis, we

display the average of the difference between global and local ranks for each productivity bin. As

in Figure SA.2, there is clear S-shape. Globally unproductive firms sort into locations with a high

concentration of unproductive competitors. Hence, their global rank is below their average local

rank, i.e., D(y) < 0. In turn, for globally productive firms, the opposite pattern arises: They

co-locate with other productive firms—i.e., within their local labor market they are relatively

unproductive compared to their economy-wide productivity—and thereforeD(y) > 0. Recall that

if there is no spatial firm sorting, we would observe thatD is a horizontal line and zero everywhere.

Figure SA.3: Difference between Global and Local Productivity Rank

0 5 10 15 20 25 30 35 40 45 50

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Notes: Data source: Establishment Panel. We rank firms by their residualized sales per worker and group them in 50
bins of equal size. For each bin, we measure firms’ rank in the local sales distribution (local rank) and in the global
sales distribution (global rank) and plot the average difference between global and local rank, denoted by D(y).

58We used the 1% quantile instead of the observed minimum sales to mitigate the effect of outliers.
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SA.5 Characteristics of Local Labor Markets

In Table SA.1, we give information on firms’ poaching behavior, both at the firm level (Panel

1) and at the local level (Panel 2). In Table SA.2, we report aspects of the cross-sectional

distribution of economic outcomes across local labor markets in Germany.

Table SA.1: On-the-Job Search and Local Labor Markets

Mean S.D. P10 P25 P50 P75 P90

Firm level (N = 5,958)

Poaching Share 0.51 0.13 0.35 0.44 0.52 0.60 0.63
Share of local EE 0.70 0.17 0.47 0.62 0.73 0.81 0.88
Share of local UE 0.56 0.22 0.31 0.42 0.54 0.70 0.83

Commuting-zone level (N = 252)

Poaching Share 0.49 0.05 0.42 0.46 0.48 0.52 0.54
Share of local EE 0.69 0.09 0.57 0.64 0.70 0.76 0.79
Share of local UE 0.58 0.11 0.45 0.52 0.60 0.66 0.69

Notes: Data source: LIAB, restricted to panel cases. In Panel A (Panel B) we report the
statistics at the firm level (commuting-zone level). To aggregate the firm-level outcomes
to the commuting-zone level, we weigh firms by total employment. The commuting-zone
level statistics are weighed by the number of establishments in that location. EE and
UE flows as well as Poaching Share are defined in Appendix C.2. Share of ‘local’ EE or
UE transitions means that we divide worker transitions within a given commuting zone
by total transitions to firms in that commuting zone.

Table SA.2: Spatial Heterogeneity: Distribution of Key Statistics

Mean S.D. P10 P25 P50 P75 P90

Average Wages 3,133 401 2,616 2,849 3,093 3,364 3,662
Average Value Added 4,640 687 3,903 4,202 4,523 4,872 5,518
Average Firm Size 11 2 9 10 11 12 13
Share Emp. Top 10% 0.56 0.06 0.49 0.52 0.55 0.59 0.63
Population Density 292 422 83 110 165 272 589
Population 317,149 420,183 92,979 127,139 190,745 325,078 596,006

Notes: Data source: German Federal Statistical Office for all variables except ‘share of employment of the largest 10% of
firms’ (Share Emp. top 10%), which we compute from the BHP (using full-time employees only). Displayed statistics are
computed at the commuting-zone level, and so the number of observations is 257. Mean (S.D.) is the average (standard
deviation) of each variable across 257 commuting zones. P10 -P90 are the percentiles of their distributions. Wages and
value added are reported at the monthly level, in 2015 Euros. See Appendix C.1 for more details on how the displayed
variables are defined.
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SA.6 Counterfactuals and Policy Exercise: Technical Details

SA.6.1 The No-Sorting Counterfactual

We adjust b̃(ℓ) so that the reservation wage in each ℓ remains the same as in the baseline model,

i.e., wR(ℓ) = A(ℓ)y, see (A.25). We also keep the estimated schedules (A,B, h) from the baseline

model. But, without spatial firm sorting, Fℓ (and thus Γℓ), (λU , λE) and d all differ from the

baseline model.

First, since the wage function in each ℓ is still strictly increasing in y, we have Fℓ(w(y, ℓ)) =

Γℓ(y). But here Γℓ(y) = Γ(y), which follows from the premise of random matching, i.e., the ex

post productivity distribution is the same across locations.

Second, as unemployed workers are freely mobile across regions, we calculate λE(ℓ) for each

ℓ to equalize the value of search while adjusting house price d(ℓ) such that the housing market

clears in each ℓ, given the estimated (A(ℓ), B(ℓ), h(ℓ)) from the baseline model:

ρV U = d(ℓ)−ωB(ℓ)A(ℓ)

[
1 + 2(λE(ℓ))2

∫ ∞

1
(1− Γ(y))γ(y)

∫ y

1

1

[δ(ℓ) + λE(ℓ)(1− Γ(t))]2
dtdy

]
d(ℓ)h(ℓ) =

ω

1− τω
E[w(y, ℓ)|ℓ](1− u(ℓ))L(ℓ),

where Γ is the economy-wide productivity distribution of firms (no longer ℓ-specific). Note

that compared to the baseline, we need to determine a new value of search, ρV U , to calculate

λE(ℓ). We choose ρV U to guarantee the same total population size as in the baseline economy,

L̄ =
∫
L(ℓ)dR(ℓ). In practice, we solve for a fixed point in ρV U so that it satisfies both welfare

equalization of workers and this population constraint. Once we determine λE(ℓ) for each ℓ, we

can compute λU (ℓ) = λE(ℓ)/κ.

SA.6.2 The Role of Endogenous Firm Sorting

When reducing place-based subsidies (through a reduction in local TFP for some locations), the

modularity properties of J̄ may change, so we need to re-solve for the sorting decision of firms

in this counterfactual equilibrium. The population size in each location (and thus worker and

firm meeting rates) depends on the local firm composition, but at the same time impacts firms’

sorting choices. We therefore need to solve for a fixed point in the firm allocation.

Given the counterfactual local TFP schedule, Ã(·), postulate an allocation of firms to locations

m(ℓ, p) that is measure-preserving. Given m(ℓ, p), we first obtain Γℓ from (8), and then find

meeting rate λU and housing price d (both as a function of (ℓ;κ,Γℓ, ρV U )) so that—given the
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counterfactual local TFP Ã(·) and the estimated schedules (B(·), h(·)) from the baseline model—

the value of search is equalized across space, and local housing market clearing holds:

ρV U = d(ℓ)−ωB(ℓ)Ã(ℓ)

[
1 + 2(κλU (ℓ))2

∫ ∞

1

(1− Γℓ(y))γℓ(y)

∫ y

1

1

[δ(ℓ) + κλU (ℓ)(1− Γℓ(t))]2
dtdy

]
,

d(ℓ)h(ℓ) =
ω

1− τω
E[w(y, ℓ)|ℓ](1− u(ℓ))L(ℓ),

where the value of search is again calculated assuming wR(ℓ) = Ã(ℓ)y, supported by adjusting

b̃(ℓ);59 and where we set the new value of search, ρV U , to achieve consistency with the total pop-

ulation size from the baseline economy, L̄ =
∫
L(ℓ)dR(ℓ). Based on unemployed workers’ welfare

equalization, we obtain λU (ℓ;κ,Γℓ, ρV
U ) and therefore λE(ℓ;κ,Γℓ, ρV U ) = κλU (ℓ;κ,Γℓ, ρV

U ).

With λU for each ℓ in hand, we can also compute λF (ℓ;κ,Γℓ, ρV U ) = A
1
α (λU (ℓ;κ,Γℓ, ρV

U ))1−
1
α ,

as well as the match value of a firm type p and location ℓ,

J̄(p, ℓ) + k(ℓ) = δ(ℓ)λF (ℓ;κ,Γℓ, ρV
U )Ã(ℓ)

∫ y

y

∫ y

y

1

[δ(ℓ) + κλU (ℓ;κ,Γℓ, ρV U )(1− Γℓ(t))]2
dtdΓ(y|p).

To find the optimal allocation m̂(ℓ, p), we maximize the sum of this value across all (p, ℓ)-pairs,

subject to land market clearing, using a linear program. Ifm = m̂, we have found the equilibrium.

If not, we use m̂ as a new starting point and repeat the same steps, until convergence.

SA.7 Quantitative Results: Additional Robustness

SA.7.1 Estimation Conditional on Industry

In Table 1, we show that local labor shares are decreasing in log GDP per capita even when we

control for the local industrial composition, suggesting that firms sort positively across space also

within industries. However, to assess the quantitative impact of within-industry firm sorting, we

need to use our model. We proceed in two ways.

We first analyze whether our main results on the quantitative importance of firm sorting are

robust to controlling for regional differences in industry composition. To do so, we first residualize

local labor shares with respect to industrial employment shares. Given this residualized labor

share schedule, we re-estimate our model and perform the No-Sorting counterfactual, in which

we allocate firms randomly across space. Table 3 shows firm sorting has an even larger effect on

spatial inequality than in the baseline model that did not control for industries.
59In particular, b̃(ℓ) is defined as in (A.25) but using Ã(ℓ), Fℓ (which we can compute based on the postulated Γℓ) and

(λU (ℓ), λE(ℓ)) obtained above.
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An alternative way to show that our results are not driven by local differences in the industrial

composition is to focus on a single industry. We focus on the manufacturing sector, which—given

that it produces tradable goods—we believe is a sector that our model can fit better than others.

To calibrate our model, we use local labor shares, average value added per employee and average

firm size from the manufacturing sector. For local unemployment rates, due to data limitations,

we use the average unemployment rate at the CZ-level as in our baseline analysis. Table 3

summarizes our main counterfactual using this alternative estimation.

SA.7.2 Estimation on an Alternative Data Source (FDZ)

In our main analysis we rely on regional-level data on labor shares, value added and firm size

from the German Federal Statistical Office. We now show that we arrive at similar conclusions

when exclusively using firm- and worker-level data from the FDZ. More specifically, we obtain

firm-level value added from the Establishment Panel of the FDZ and construct the local labor

shares based on this variable. In addition, rather than ranking locations by their GDP per capita,

we rank them by their average value added per full-time employee. Table 3 summarizes our main

counterfactual using these alternative data.

SA.7.3 Estimation of a Model with Endogenous Firm Selection

In this extension, we allow the types of firms that are active in each local labor market to be

endogenously determined.

Setup. As in the baseline model, we assume that firms must first purchase one unit of land

and then search for workers. Upon receiving job offers, unemployed workers accept them only

when productivity exceeds an endogenous region-specific cutoff y(ℓ) ∈ [y, y). Note that a firm

of productivity y(ℓ) makes zero profit, and A(ℓ)y(ℓ) = wR(ℓ). We further assume that the

unemployment benefit equals b̂ > 0, which we choose such that y(ℓ) = y.

By combining A(ℓ)y(ℓ) = wR(ℓ) with reservation wage equation (SA.9) and wage equation

(5), we obtain the following equation that implicitly defines cutoff y(ℓ):

A(ℓ)y(ℓ) = b̂+ (1− κ)φU (ℓ)

∫ y

y(ℓ)
(1− Γℓ(t))2φ

E(ℓ)γℓ(y)

∫ y

y(ℓ)

A(ℓ)

(1 + φE(ℓ)(1− Γℓ(t)))2
dtdy. (SA.21)

If there does not exist a cutoff that satisfies this equation, workers accept all jobs, i.e., y(ℓ) = y,

and all firms earn (weakly) positive profits.

In turn, if there exists an endogenous cutoff, we need to distinguish job arrival rate λU (ℓ)
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from job finding rate jfr(ℓ) in each ℓ. The local job finding rate of unemployed workers and the

local unemployment rate are given by:

jfr(ℓ) = λU (ℓ)(1− Γℓ(y(ℓ))) (SA.22)

u(ℓ) =
jfr(ℓ)

jfr(ℓ) + δ(ℓ)
. (SA.23)

As in our baseline model, assuming the total measure of vacancies in each region equals one, the

population size can be expressed as a function of the unemployment rate and the average firm

size, L(ℓ) = 1
1−u(ℓ) l̄(ℓ). This determines the local job arrival rate as

λU (ℓ) = A(u(ℓ) + κ(1− u(ℓ)))−1/2

(
l̄(ℓ)

1− u(ℓ)

)−1/2

, (SA.24)

where we use A from the baseline estimation. Average local value added is then

E[z(y, ℓ)|ℓ] = A(ℓ)
1

1− Γℓ(y(ℓ))

∫ y

y(ℓ)
ygℓ(y)dy, (SA.25)

where we take into account that, in each labor market, only a subset of firms is active.

Identification. When the cutoff, y(ℓ), is greater than y (which is the case we focus on), we

can identify the firm type p = µ(ℓ) that settled in location ℓ from its labor share in the same way

as in the baseline model. For the remaining parameters, first note that we can express λU (ℓ) as

a function of y(ℓ) by combining (SA.22), (SA.23), and (SA.24)

λU (ℓ) = A

(
δ(ℓ) + κλU (ℓ)(1− Γℓ(y(ℓ)))

λU (ℓ)(1− Γℓ(y(ℓ)))
l̄(ℓ)

)−1/2

. (SA.26)

We then jointly identify (y(ℓ), λU (ℓ), A(ℓ)) for each ℓ using three equations, (SA.21), (SA.25)

and (SA.26), along with separation rate δ(ℓ), average firm size l̄(ℓ), mean value added E[z(y, ℓ)|ℓ],

the overall matching efficiency A, and the relative matching efficiency κ from the baseline esti-

mation. And we recover job finding rate from (SA.22).

Because unemployed workers have positive income b̂, we assume that the government no longer

provides subsidies, and all workers spend a fraction ω of their income on housing. With this

assumption, we can estimate local amenities B(ℓ) and housing supply h(ℓ) using two equations:

(i) an equation that is obtained by slightly modifying the value of search of unemployed workers in
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(21) to endogenize firm selection, and (ii) housing market clearing. They are respectively given by:

B(ℓ)d(ℓ)−ω =

(
A(ℓ)y(ℓ) + φE(ℓ)

∫ y

y(ℓ)
(1− Γℓ(t))2φ

E(ℓ)γℓ(y)

∫ y

y(ℓ)

A(ℓ)

(1 + φE(ℓ)(1− Γℓ(t)))2
dtdy

)−1

d(ℓ)h(ℓ) = ω(u(ℓ)̂b+ (1− u(ℓ))E[w|ℓ])L(ℓ).

Results. We report the estimation results of the main model objects graphically, focusing

on the changes compared to the baseline model. The left panel of Figure SA.4 shows the key

new object, productivity cutoff y(ℓ), which increases in ℓ. This pattern indicates that workers

are more selective in prosperous locations, where high-productivity firms are concentrated. As

a result, the job finding rate decreases in ℓ (see orange line, right panel). Despite the more

pronounced changes in firm composition across space, estimated local TFP is still increasing in

ℓ (middle panel).

Figure SA.4: Estimation Results
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Counterfactual. For the counterfactual exercise without firm sorting, we set Γℓ(y) = Γ(y)

and determine the population distribution, while allowing the endogenous cutoff y(ℓ) to be consis-

tently determined in each local labor market. We solve for the population in each ℓ subject to the

total population constraint, housing market clearing, and welfare (i.e., search value) equalization.

Table 3 summarizes our main counterfactual based on this model extension.

SA.7.4 Estimation of a Model with Imperfect Worker Mobility

We consider an extension of our model that accounts for imperfect spatial mobility of workers.

Setup. We assume that workers receive preference shocks ϵ(ℓ), which follow an i.i.d. Frechet

distribution with shape parameter ν, and their value when choosing a region ℓ is V U (ℓ)ϵ(ℓ). The
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population distribution across space can then be expressed in closed form as:

L(ℓ)

L
=

(V U (ℓ))ν∑
k(V

U (k))ν
. (SA.27)

Choice probabilities (SA.27) replace the search value equalization condition from our baseline

model. Dispersion parameter ν represents the elasticity of the local population with respect to

the local value of search. In the limit, when ν goes to infinity, our model reduces to the baseline

case, in which migration frictions are absent.

Estimation. We pin down parameter ν by computing the elasticity of the local population

size with respect to local average wages, which is as a function of ν, leveraging relevant elasticity

estimates available in the literature. Using the value of unemployed workers in equation (21), the

elasticity of the local population size with respect to local average wages can be approximated

as (ignoring a general equilibrium constant)

∂ lnL(ℓ)

∂ lnE[w|ℓ]
= ν

∂

∂ lnE[w|ℓ]
ln

(
A(ℓ)y + λE(ℓ)

∫
wR(ℓ)

1− Fℓ(t)

ρ+ δ + λE(ℓ)(1− Fℓ(t))
dt

)
− νω

∂ ln d(ℓ)

∂ lnE[w|ℓ]
.

Except for the scale parameter ν, we can compute the first term in the above expression by

running a regression of local population size on local average wages, using our estimates from the

baseline model; and we compute the second term using the housing market clearing condition.

We obtain:

∂ lnL(ℓ)

∂ lnE[w|ℓ]
= ν(1.01− ω) = 0.738ν.

In the literature, the elasticity of migration flows with respect to income commonly ranges be-

tween 2 and 4 (e.g., Allen and Donaldson, 2020). We are interested in long-term effects, so we

take a value at the higher end. Since we are considering long-run migration, we assume an elas-

ticity of 4, which implies ν = 5.42. Finally, we pin down amenity schedule B(·) by matching the

spatial population distribution in the data. We do so by taking the ratio of the population size

of two regions and plugging in the value of search (21), which yields the following equation:

B(ℓ)d(ℓ)−ω =

(
A(ℓ)y + λE(ℓ)

∫
wR(ℓ)

1− Fℓ(t)

ρ+ δ + λE(ℓ)(1− Fℓ(t))
dt

)−1

ρV U (ℓ)

(
L(ℓ)

L(ℓ)

) 1
ν

.

Note that the assumption of imperfect worker mobility does not affect the estimation of any other

parameters.
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Counterfactual. To compute the counterfactual without firm sorting, i.e., Γℓ(y) = Γ(y),

we find the schedules {L(ℓ), λU (ℓ), d(ℓ)} that satisfy (SA.27), which replaces the condition that

equalizes the value of search across locations in the baseline model. The other equilibrium

conditions remain the same as in our baseline model. Table 3 summarizes our main counterfactual

based on this model extension.
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