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Abstract

Why are economic activities concentrated in space? What are the policy implications
of this concentration? And how do we expect it to change in the future? We revisit these
classic questions in the context of non-tradable services, such as restaurants and retail,
in Seoul. To understand the spatial concentration of services, we first causally identify
positive spillovers across services stores. We microfound these spillovers by incorporating
the trip-chaining mechanism—whereby consumers make multiple purchases during their
services travel—into a quantitative spatial model that endogenizes the spatial distribution of
services. When calibrated to an original survey on trip chaining, this mechanism explains
about one-third of the observed concentration. However, unlike standard agglomeration
mechanisms, it does not lead to inefficiency nor it exacerbates welfare inequality. Finally,
we show that spatial linkages of services consumption play a crucial role in shaping the
impact of the rise of work from home and of delivery services on the distribution of services.
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1. Introduction

It is well documented that economic activities are highly concentrated in space. An extensive empirical
literature documents the agglomeration of various economic activities, and a corresponding theoretical
literature analyzes the mechanism that leads to such agglomeration.1 However, much of this literature
focuses primarily on manufacturing industries. Services, which are of comparable importance in terms
of expenditure and employment shares, show an even higher degree of concentration. However, the
agglomeration of services has been less studied, both theoretically and empirically.
To fill this gap, this paper studies the concentration of non-tradable consumption services, such

as restaurants and retail stores. Unlike tradable goods, non-tradable services require that consumers
travel to the location where the services are provided.2 Consumers mainly travel to nearby regions due
to spatial frictions, and often make multiple purchases per travel—that is, they exhibit trip-chaining
behavior. For example, a consumer may first visit a retail store to shop and then go to a restaurant, or
visit a nearby grocery store while waiting on a car repair.
Our paper demonstrates the importance of trip-chaining behavior in the concentration of the non-

tradable services sector and its implications for efficiency and welfare. Trip chaining suggests that stores
in a given location benefit from the presence of other stores, since a purchase at one store increases the
likelihood of purchases at a nearby store.3 We develop a theory of the non-tradable services market that
incorporates trip chaining. To quantify the model, we use an original survey of trip chaining and micro
datasets from Seoul. We find that spillovers generated by the trip-chaining mechanism account for about
one-third of the observed concentration of non-tradable services. Furthermore, we show that despite its
importance in concentration, trip-chaining behavior does not lead to inefficiency or exacerbate welfare
inequality, which distinguishes it from standard agglomeration mechanisms.
We begin our analysis by documenting the presence of spillovers in the services sector, which is

expected given the spatial concentration of services stores. Using a shift-share instrument approach, we
causally identify positive spillovers across sectors. Specifically, we find that a 10% exogenous increase
in the number of stores in one sector leads to a 3.6% increase in the number of services stores in
other sectors in the same region, which indicates substantial positive spillovers. We then discuss the
plausibility of the exclusion restrictions and relevance of the instruments in our setting.
Next, we develop a quantitative spatial model that endogenously determines the distribution of

services stores. Central to our model is a novel microfounded demand spillover mechanism that arises
from trip-chaining behavior in services travel. To incorporate this mechanism, we adopt a dynamic
discrete choice framework and exploit its recursive structure to maintain tractability and a gravity
equation. We also incorporate scale economies—a standard reduced-form approach for modeling
spillovers—which capture the idea that the productivity of services stores in a region increases with

1 See Combes and Gobillon (2015), Rosenthal and Strange (2004), and Duranton and Puga (2004) for reviews.
2 This is commonly referred to as trade in services (e.g., Lipsey, 2009; Eaton and Kortum, 2018; Agarwal, Jensen, and

Monte, 2020). Another type of trade in services, examined by Muñoz (2023), involves the migration of workers employed by
services firms.

3 We use the term services stores or simply stores to refer to firms providing non-tradable consumption services.
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the size of the services market. Both trip chaining and scale economies provide potential explanations
for the observed spillovers in the services market. An exogenous increase in the number of stores in a
particular sector benefits nearby stores, either by stimulating demand through increased foot traffic or
by raising productivity levels.
However, we show that the trip-chaining mechanism and scale economies possess distinct efficiency

properties. Trip chaining itself is not a source of inefficiency and does not exacerbate or mitigate
underlying monopolistic distortions. This result holds regardless of the specific modeling approach used
for trip chaining, as long as the model features a constant elasticity of substitution between individual
stores. In contrast, when spillovers arise from external economies of scales, the decentralized economy
is generically inefficient in terms of both interregional and intraregional resource allocation, and scale
economies exacerbate monopolistic distortions. This inefficiency calls for further policy intervention.
These findings highlight the importance of distinguishing between the specific mechanisms behind
spillovers. To this end, we turn to estimation of the quantitative model, which proceeds in several steps.
First, we estimate the spatial friction parameters by fitting the model-implied gravity equation to

the observed patterns of services travel. In the second step, we calibrate a subset of the parameters
directly using our data. Importantly, we calibrate the degree of trip chaining based on the results of
an online survey we conducted, which is specifically designed to collect information on the number
of stores visited per travel. Third, we estimate the remaining structural parameters associated with
non-tradable services, including the degree of economies of scale, using Bartik-motivated generalized
method of moments estimation. This estimation strategy exploits exogenous variation from the shift-
share instrument constructed from structural residuals and accounts for spatial linkages. Our results
indicate that the trip-chaining mechanism explains a large fraction of the observed spillovers, which
suggests that the non-tradable services market operates close to efficiency.
Our estimated model suggests that the spillovers generated by the trip-chaining mechanism explain a

significant portion of the concentration of services stores, comparable to the role of location fundamentals
or access to consumers. When we turn off the possibility of trip chaining, the dispersion of services,
as measured by the standard deviation of the log number of stores, decreases by about 35%. However,
trip chaining does not exacerbate inequality in services market access (SMA), which represents the
value consumers in each region derive from services travel. Although trip chaining leads to an uneven
distribution of services stores, which increases SMA inequality, the trip-chaining behavior itself reduces
SMA inequality when the distribution of services is held fixed, and thus offsets the first channel. This
occurs because trip chaining effectively reduces the travel disutility per purchase.
Finally, we conduct counterfactual exercises to examine the impact of the rise of work from home

and delivery technology for non-tradable services on urban structure. Results indicate that the effect of
work from home on the concentration of services depends heavily on the spatial linkages of services
consumption between residential and business areas. Even after the rise of work from home, many
business areas in Seoul remain highly concentrated due to their strong spatial linkages with residential
areas, which attract a significant number of consumers who work from home. In contrast, the emergence
of delivery technology has a significant effect on reducing the concentration of services stores. As
spatial frictions decrease, stores in concentrated areas that are close to consumers lose their advantage.
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Interestingly, trip chaining also reduces concentration in industries that do not use delivery services.
When fewer consumers visit concentrated areas, all stores are negatively affected by a decrease in
potential customers who would otherwise make subsequent purchases.

Related Literature. This paper is related to several strands of the literature. First, the paper contributes
to the literature on the agglomeration of economic activities, particularly in the context of the services
sector. Studies have provided suggestive evidence of spillovers, such as the colocation of services
stores and the increase in rental prices in areas with higher services store densities (e.g., Leonardi and
Moretti, 2023; Koster, Pasidis, and van Ommeren, 2019). In addition, several studies have provided a
microfoundation for these spillovers, such as consumer benefits from the agglomeration of stores due
to imperfect information or the desire to compare goods (e.g., Konishi, 2005; Takahashi, 2013; Eaton
and Lipsey, 1979). However, these mechanisms operate primarily within individual sectors. In this
paper, we provide direct evidence of spillovers across sectors and introduce a microfounded spillover
mechanism that is consistent with both our empirical findings and the travel behavior of consumers in
the data.
The literature on trade in non-tradable services extensively documents customers’ travel patterns

when purchasing non-tradable goods and services, and shows that spatial frictions are a first-order
concern in consumption choices (e.g., Couture, 2016; Davis et al., 2019; Monte, Jensen, and Agarwal,
2020). Some studies specifically examine the determinants of customers’ trip chaining patterns, and
focus on how they are affected by agglomeration of services or transportation costs (e.g., Anas, 2007;
Primerano et al., 2008; Bernardin Jr, Koppelman, and Boyce, 2009; Arentze, Oppewal, and Timmermans,
2005; Relihan, 2022). In contrast, our analysis focuses on how consumer behavior shapes the spatial
distribution of services. Moreover, it goes beyond the typical sector-specific or localized analyses found
in the literature by examining the entire spatial distribution of general non-tradable services goods in a
city.
Finally, we build on the literature that has developed quantitative urban models (e.g., Ahlfeldt et al.,

2015). This literature provides a framework for studying the internal structure of cities, including the
population distribution of residences and workplaces, the impact of transportation infrastructure, and
the effects of agglomeration economies. In this paper, we focus on the distribution of non-tradable
consumption services within a city, which has been less studied despite its importance as a main
advantage of cities, as shown by Glaeser, Kolko, and Saiz (2001), Couture and Handbury (2020), and
Handbury and Weinstein (2015). Recent studies have used quantitative urban models to examine how
the distribution of services is shaped, focusing on the effects of the spatial distribution of consumers
(e.g., Couture et al., 2021; Almagro and Domínguez-Iino, 2020). Instead, this paper focuses on the
importance of non-tradable services travel with trip-chaining behavior for the distribution of services.
Miyauchi, Nakajima, and Redding (2022) also model trip chaining in a quantitative urban model and
show the importance of the travel itinerary between home and work, which translates the concentration
of tradable sectors into the concentration of services. We focus instead on how trip chaining creates
spillover forces that operate across nearby services stores, especially within regions, and their impact
on the concentration of services.

3



Figure 1. Number of Services Stores Per Area

The rest of the paper is organized as follows. Section 2 discusses the background and data, provides
reduced-form evidence on the spillover mechanism, and presents stylized facts on services travel.
Section 3 develops a structural model that features the spillover mechanism, which is estimated in
Section 4. In Section 5, we use the estimated model to investigate the importance of spillovers that arise
from the trip-chaining mechanism. Finally, in Section 6, we perform counterfactual exercises on the
urban structure in the future.

2. Motivating Evidence

We analyze the non-tradable services market in Seoul Special Metropolitan City, the capital of South
Korea. With a population of approximately 10 million, Seoul accounts for 18.7% of the country’s total
population and contributes to 22% of its GDP. The geographic unit of this paper is the zone (dong) which
is contained within a larger spatial unit called the district (gu). We use zone or region interchangeably
in this paper. The zone is a granular geographic unit. Seoul consists of 425 zones distributed across
25 districts, and covers an area of 605.21 km2 (or 233.67 mi2). This results in an average zone size of
about 1.4 km2 (or 0.55 mi2).
The supply of services is spatially concentrated and shows strong correlation among sectors. In

Figure 1, we plot the number of services stores per area of each zone on the map of Seoul. We can
see that the distribution of services across zones is highly uneven. Moreover, zones with high services
supply are clustered together in a few areas. In addition, we observe a high correlation in the spatial
distribution of services stores in three sectors: Food, Retail, and Other. The correlation coefficients of
the log number of stores between each pair of sectors are all above 0.79. This indicates that if a region
has many stores in one sector, it is likely to have many stores in the other sectors as well.
This concentration suggests the presence of spillovers, which we define as any forces that increase

economic outcomes (here, services stores) as the size of the local economy increases (Combes and
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(a) Number of Services Stores Per Total Income (b) Share of Consumers from Other Zones

Figure 2. Spatial Distribution of Services in Seoul

Gobillon, 2015). Two observations lend support to the idea that the concentration is not easily explained
by differences in local demand or location productivity alone, which suggests the existence of spillover
forces.4 First, even after normalizing the number of stores by the total income of the population in
each zone, the distribution of services remains highly concentrated, as shown in Figure 2a. In addition,
Figure 2b shows that regions with a higher number of stores per total income tend to have a higher share
of consumers from other zones. In the most concentrated areas, more than 80% of consumers travel
from other zones for services consumption. Second, since we are analyzing the internal structure of
a city, it is unlikely that local productivity differences are large enough to account for all the spatial
disparity.
In this section, we begin by describing the datasets we use in this paper. We then provide reduced-

form evidence on spillovers in the non-tradable services sector. Using a shift-share instrument approach,
we causally identify positive spillovers across sectors. The goal of the next section is to develop a
structural model of the services sector that can explain these spillovers. To guide the modeling choice,
we conclude this section by establishing two stylized facts about the demand for services.

2.1 Data Description

We rely on three main datasets from Seoul: the Korean Household Travel Survey and Online Household
Services Travel Survey on the services demand side, and Seoul commercial area data on the services
supply side. Before explaining details of the data, we will clarify the concepts of travel and trip chaining,
which we will refer to throughout the paper. Consumers’ services travel exhibits trip-chaining behavior
in the sense that it consists of a sequence of trips (or purchases) that begin and end at locations unrelated
to services consumption, such as home or workplace.

4 Zoning laws in Korea have limited impact on the distribution of services stores because of mild and narrow restrictions
that are mostly confined to a few designated areas. In addition, the process of opening and closing services stores is quite
efficient, with average quarterly entry and exit rates of 2.5% to 3.5%.
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Data 1: Korean Household Travel Survey. The first dataset is the Korean Household Travel Survey,
a representative travel survey conducted by the Korea Transport Database. The survey asks individuals
to report all of their travel on a given day. The sample includes approximately 200,000 travel instances
from 43,000 individuals within Seoul. We use weekday and weekend surveys conducted in 2010 and
2016. The dataset provides detailed information on travel, including origin and destination zones, mode
of transportation, and demographic information. Importantly, the survey asks in detail about the purpose
of the travel, which allows us to focus only on services travel and not on other travel such as commuting.
We divide services travel into three categories: Food, Retail, and Other. The last category, Other,
consists of recreational activities, exercise, touring, leisure, and private education.

Data 2: Seoul Commercial Area Data. Our second main dataset comes from the Seoul Commercial
Area Analysis Service, which is a publicly available big data hub operated by the Seoul Metropolitan
Government. It contains a rich set of variables, such as the number of services stores in each region
and estimates of their sales and rents. These variables are constructed from confidential cell phone
data, credit card transactions, and more. Most of the variables are provided at quarterly frequency
starting in 2014, and we aggregate them to an annual frequency. The geographic unit of this dataset is a
commercial area which is a smaller unit than a zone. There are 1,496 commercial areas in Seoul, so
there are about 3.5 commercial areas in each zone.5 We map each commercial area to a zone using the
mapping table provided. A key advantage of this dataset is that variables are provided at subsector level:
We have three sectors (Food, Retail, Other) and within each sector there are 9, 8, and 14 subsectors,
respectively.6 This allows us to use subsector composition to construct shift-share instruments.

Data 3: Online Household Services Travel Survey. To complement the Korean Household Travel
Survey, which lacks certain details necessary to accurately quantify the strength of the trip-chaining
mechanism,7 we conduct a supplementary online survey that closely follows the structure of the Korean
Household Travel Survey but includes additional questions on trip-chaining patterns. The survey
specifically asks respondents about their trip-chaining experiences, including information on the total
number of stores visited with at least one purchase, the location, sector, and subsector of each purchase
made, and the origin and destination of the travel. We mainly ask about services travel experiences on
2 specific days within the last 7 days—1 during the week and 1 on the weekend. The complete survey
questions can be found in Appendix E. We use a survey provider called Embrain—the largest online
survey company in Korea—to recruit respondents and conduct the survey online. We collected a total

5 One limitation of this dataset is that commercial areas do not completely cover all of Seoul: Only 375 of the 425 zones
appear in the dataset. However, this is not a serious concern because it covers most of the services stores in Seoul. For example,
it contains more than 96% of all restaurants in Seoul.

6 In the raw data, there are 10, 47, and 43 subsectors, respectively, which amounts to a total of 100 subsectors. However,
the effective number of subsectors in our dataset is 63 because we do not observe either the number of stores or sales estimates
for the other subsectors. We aggregate some of the subsectors if they have no sales estimates or if they appear in only a few
zones. After redefining the subsectors, we have a total of 31 subsectors.

7 Respondents are instructed not to report trips that take less than 5 minutes on foot. In addition, the survey does not provide
explicit guidelines on how to report consecutive trips, which may lead to an underreporting of such trips, especially if they are
made for the same purpose. This is evidenced by the fact that 90% of the trips in the data are followed by return trips.
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of 2,000 responses in August 2022.8 To ensure that the sample is representative of Seoul residents, we
use a proportional stratified sampling approach based on gender and age group (6 groups for ages 14 to
64) to match the population in the census.9 We carefully designed the survey to ensure that respondents
understand concepts such as trip chaining and provide valid responses. Before the survey begins, we
define important variables and provide examples, and respondents are required to read this information
for at least 1 minute. To further improve response quality, we check for consistency across different
questions. If we detect inconsistent answers, we display a message that encourages respondents to
answer carefully and ensure consistency in their responses.

Others. In addition to the three main datasets, we use distance data between each pair of zones. We
use the travel time between two zones to best approximate the effective distance. The geographic
coordinate of each zone is identified by the location of the zone’s community service center, which is a
widely used reference point. By using Seoul Bus Open-API, we obtain the expected travel time for the
optimal combination of public transportation options. These data can be considered to be similar to the
Directions API available on Google Maps. We also use Seoul Business Survey and Seoul Population
and Income data, which are discussed in more detail in Appendix C.3.

2.2 Reduced-form Evidence on Spillovers

To provide suggestive evidence of spillovers in the services sector, we estimate the effect of a plausibly
exogenous increase in the number of stores in one sector on the number of stores in other sectors within
the same zone.10 For example, suppose there is an exogenous increase in the number of Retail stores in
a zone. If this increase can somehow benefit the Food and Other sectors through spillovers, those two
sectors would also experience an increase in the number of stores. To quantify cross-sector spillovers,
we start with the following specification:

∆ logNjsd = α1 + β1∆ logNjs′ + X′
jsdγ1 + εjsd, (1)

where ∆ logNjsd is the growth rate of the number of stores in zone j, sector s, and subsector d between
years t = 2015 and t′ = 2019. The explanatory variable ∆ logNjs′ is the growth rate of the number of
stores in zone j and sector s′ ̸= s, defined by the weighted sum of subsector-level growth rates,

∆ logNjs′ =
∑
d′

sjs′d′∆ logNjs′d′ ,

8We believe that any potential bias in the results due to the Covid-19 pandemic is minimal. The Korean government lifted
strict regulations in response to the pandemic in April 2022, and by the time of the survey, daily foot traffic had returned to
pre-pandemic levels.

9 Our sample may not be fully representative due to the use of an online survey platform. But given the high internet
penetration rate in Korea (over 95%), we believe that the online survey method remains a reasonable approach for data
collection in this context. However, we cannot rule out the possibility that the recruitment methods used by the survey
company may cause a problem. Individuals with higher incomes may be less inclined to participate in online surveys due to
the opportunity cost associated with their time.

10 In this section we do not attempt to distinguish between the various mechanisms underlying spillover. For this purpose,
we will combine a structural model with the survey data on trip chaining in the following sections.
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where weight sjs′d′ is the revenue share of subsector d′ in sector s′ in year t = 2015. The covariate Xjsd,
which will be explained later, contains a group of controls.
One threat to identification is the possibility of common regional shocks that simultaneously affect

the number of stores in all sectors in the same direction. In such cases, the OLS estimate of specification
(1) would be biased upward and falsely indicate strong positive spillovers across sectors. To address this
endogeneity concern, we use the shift-share instrument approach of Bartik (1991) to isolate exogenous
variation in∆ logNjs′ .11 As an instrument, we use the predicted local growth in the number of stores in
a sector, which is computed by interacting the initial subsector composition with city-level subsector
growth rates:

∆ logNBartikjs′ =
∑
d′

sjs′d′,0∆ logNSeoul,s′d′ ,

where sjs′d′,0 is the revenue share in the initial year t0 = 2014, and ∆ logNSeoul,s′d′ is the growth rate in
the number of stores in subsector d′ in all of Seoul.12 Our instrument exploits how differential exposure
to common city-level preference shifts affects the growth of the number of stores in a sector. For example,
suppose that Japanese restaurants became popular throughout the city, and bars became unpopular. If
a region initially had a higher share of Japanese restaurants and a lower share of bars, then it likely
has a comparative advantage in the former. As a result, a larger share of the gains from the citywide
change in preferences would tend to accrue to that region and lead to a higher growth in the total number
of restaurants, including both Japanese restaurants and bars.13 We report citywide subsector trends in
Table A.5 and show in Figure A.2 that our Bartik instruments exhibit sufficient spatial variation.
In this regard, our research design is closely related to that of Goldsmith-Pinkham, Sorkin, and

Swift (2020) (hereafter, GSS).14 For our instruments to be valid, the growth trend of sector s, the term
εjsd in specification (1), should be uncorrelated with the initial subsector composition of sector s′ ̸= s,
{sj,s′,d′,0}d′ , conditional on controls Xjsd. In many papers that use shift-share instruments (e.g., Autor,
Dorn, and Hanson, 2013), the exclusion restriction requires orthogonality between a sector’s trend and
its initial composition (in our context, this can be written as εjsd ⊥ {sj,s,d,0}d). Our requirement is
much less demanding than such exclusion restrictions. Moreover, we can even control for the subsector
composition of sector s, in which case our exclusion restriction becomes

{sj,s′,d′,0}d′ ⊥ εjsd | {sj,s,d,0}d,Xjsd, ∀s′ ̸= s, (2)

11 This approach is widely used in the trade and urban literature; examples include Topalova (2010), Autor, Dorn, and
Hanson (2013), and Dix-Carneiro and Kovak (2017). However, it is rarely used in studies on agglomeration economies. One
notable example is Diamond (2016), who uses a shift-share labor demand shock

12 In practice, we exclude the number of stores in j when calculating city-level growth, although this does not change the
results because we have a sufficiently large number of zones.

13 It is worth noting that a higher initial share may result in more intense competition, leading to smaller growth in the
number of Japanese restaurants in this region. Nevertheless, as long as this cannibalization effect is not excessively strong,
the higher initial share of Japanese restaurants still has a positive impact on the total number of restaurants. The results of
first-stage regressions in Table 1 confirm that this is the case in our data.

14 For a different approach to shift-share instruments, see Borusyak, Hull, and Jaravel (2020) and Adão, Kolesár, and Morales
(2019).
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Table 1: Estimation Results
dependent variable: ∆ logNjsd

(1) (2) (3) (4)
OLS IV IV IV

∆ logNj,s′ 0.181∗∗∗ 0.341∗∗ 0.356∗∗ 0.337∗∗

(0.027) (0.145) (0.161) (0.149)
Sector FE, subsector trend ✓ ✓

Subsector, district FE ✓ ✓

Additional controls ✓ ✓

FIRST STAGE ESTIMATES

∆ logNBartikj,s′ 0.627∗∗∗ 0.660∗∗∗ .
(0.112) (0.115) .

First-stage F stat 31.32 32.80 .
Observations 18,773 18,773 17,665 17,665

Notes: Equation estimates based on Seoul Commercial Area data for 2014, 2015, and 2019. We use
the longest time period before emergence of the first Covid-19 case in January 2020. Observations are
growth rates at zone-sector-subsector level. Standard errors are clustered at zone-sector level. We drop
observations with ∆logNjsd more than 5 standard deviations from the mean for each subsector. Results
remain largely unchanged when we do not implement this trimming, although the coefficients tend to be
slightly larger in absolute terms.

which is even easier to hold. A possible concern is that zones with high shares of fast-growing subsectors
may be affected by other positive growth shocks, which could confound our estimates of spillovers with
these zone trends. In Appendix A.2, we conduct the diagnostic tests GSS recommend to further ensure
the validity of our instruments.
In Table 1, we report results of the estimation of spillovers. In all specifications, we control for

sector s and s′ fixed effects, the subsector composition of sector s and of the third sector s′′. In practice,
instead of including the full vector of subsector shares {sjsd,0}d∪{sjs′′d′′,0}d′′ as controls, we control for∑

d sjsd,0∆ logNSeoul,sd and
∑

d′′ sjs′′d′′,0∆ logNSeoul,s′′d′′ . In addition, to control for subsector-specific
trends, we include as controls either the city-level growth rate of each subsector, ∆ logNSeoul,sd, or the
subsector fixed effect.
In Column (1), we report the result of ordinary least squares estimation. We find significant positive

effects, but this result may be biased, as discussed. Therefore, in Column (2), we report the result from
the instrumental variable estimation with the same set of controls as in Column (1). In the bottom
panel, we report the result of the first-stage regression, where we find a statistically significant positive
coefficient despite the presence of cannibalization effects indicated by a coefficient much smaller than
1. The IV regression coefficient is statistically and economically significant, which suggests that an
exogenous 10% increase in the number of stores in one sector leads to an average 3.4% increase in the
number of stores in other sectors.15

15We find that an OLS coefficient is smaller than IV coefficients, which could be due to measurement errors.
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In Column (3), we show that the result is robust to the inclusion of additional controls. We include
subsector fixed effects and district fixed effects, as well as controls for the growth rates of income, rents,
and density. In addition, we control for the levels of these variables in 2015 to address concerns about
the exclusion restrictions. We control for these as a precautionary measure, even though the correlations
with the instruments are not statistically significant. See Appendix A.2 for a more detailed discussion.
We find that the spillovers remain significantly large. From our preferred specification in Column (3),
we find that a 10% exogenous increase in the number of stores increases the number of stores in other
sectors by 3.6%.16

In Column (4), we use the theory-consistent specification implied by our model in Section 3 and
include the same controls as in Column (3). See Appendix B.3 for how we can derive the specification
using a first-order approximation of the model in Section 3. The theory-consistent specification requires
that we regress ∆ logNjsd not only on ∆ logNjs′ but also on ∆ log ÑBartikjs and ∆ log ÑBartikjs′′ , where we
define quasi-Bartik instruments {∆ log ÑBartikjs }s by interacting t = 2015 (instead of initial) subsector
composition with city-level subsector growth rates. It also requires that we jointly instrument these three
regressors using (∆ logNBartikjs′ ,∆ logNBartikjs ,∆ logNBartikjs′′ ). We find that the result is quantitatively
similar to that in Column (3).
In Appendix A.3, we examine the within-sector effect of an exogenous increase in the number of

stores. In particular, we estimate the effect on the number of stores in a subsector when there is an
exogenous change in the number of stores in other subsectors in the same sector. As in the across-sector
specification, we exploit the differential exposure to city-level preference shifts to identify exogenous
variation in the number of stores. Our results suggest that the number of stores in a subsector decreases
by 4.6% on average in response to a 10% exogenous increase in the number of stores in other subsectors
within the same sector. This negative effect is likely due to competition between stores within the same
sector (e.g., between Korean restaurants and Japanese restaurants) because consumers can more easily
substitute between subsectors within a sector. There could be also spillovers that operate within sectors,
but our results suggest that the competition is strong enough to produce the negative net effect within
sectors. In Section 4.1, when we estimate the model, both of the patterns across and within sectors
become crucial moments.
The results in Table 1 consistently suggest that an exogenous increase in the number of services

stores has significant positive spillovers to other sectors. So far, we have remained agnostic about the
specific mechanism that generates these results. In Section 3, we propose a novel mechanism that can
explain them.

2.3 Stylized Facts on Services Travel

Before developing a model that microfounds the spillover mechanism, we conclude this section by
documenting two stylized facts about consumers’ services travel using the Korean Household Travel

16 We also compute Conley HAC standard errors, which allow for arbitrary spatial correlation of errors within 3 km, and
find that estimates remain statistically significant at the 5% level.
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Figure 3. Stylized Facts

Survey and the Online Household Services Travel Survey. These facts will discipline our structural
analysis in the next section.

Fact 1: Consumers travel to other zones for services—and mainly to nearby zones—which accounts
for a significant portion of travel.

Of all types of travel, services travel accounts for 26.1%. This makes it the second most common type of
travel after work- and school-related travel, which accounts for 59.8% of all travel. Consumers travel to
other zones with a probability of 60%, which indicates that a significant part of the demand for services
comes from other regions. However, services travel is often limited to nearby regions. In Figure 3a, we
plot the cumulative distribution of distance (in minutes) for both services travel and work and school
related travel. The cumulative distribution function for services travel increases in distance much faster
than for work- and school-related travel. Nearly 90% of services travel is concentrated within 30 minutes
of distance. The average distance of services travel is about 12.5 minutes, which is only one-half the
distance of work- and school-related travel (24.8 minutes). Our findings suggest that people are more
sensitive to distance when traveling for services than when commuting for work or school.

Fact 2: Consumers make purchases at multiple stores during their services travel.

To assess the extent of trip chaining, we ask the following question on the online survey: “In total, how
many purchases did you make per travel? Please write down the total number of stores that you visited
with at least one purchase”. Figure 3b shows the distribution of the number of stores. About one-half of
consumers reported visiting multiple stores with at least one purchase, and about 20% visited three or
more stores per travel. On average, consumers made purchases at 1.72 stores per travel. Additionally,
our survey reveals that the majority of travel—approximately 70%—originates from the consumer’s
home. Furthermore, in about 70% of travel, consumers return to their initial location after completing
their purchases.17 Finally, we find that the sector of the initial purchase does not significantly influence
the choice of the sector for the subsequent purchase. About 53% of consumers purchase services goods
in the same sector for their first and second purchases, which is similar to the expected probability of

17 We define the end of travel We define the end of travel as when a consumer visits any locations that are not intended for
the purchase. Services travel during commuting is not frequent, at least in Seoul, and accounts for only 16% of total travel.
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51% if they decide what to buy independently across purchases. These results guide our modeling
choices for trip chaining in Section 3. More details on the results of the online survey can be found in
Appendix A.1.

3. Theoretical Framework

In this section, we develop a structural model of non-tradable services that explains the positive spillovers
across services stores. The key features of the model are services travel and trip-chaining behavior,
and the stylized facts discussed earlier guide us in how to model these features. To capture consumers’
frequent travel to nearby regions, we assume that consumers can travel to other regions for services
consumption, but they are subject to disutility from distance. We also model consumers’ trip-chaining
behavior explicitly, while maintaining tractability by using a dynamic discrete choice framework as in
Rust (1987) and Aguirregabiria and Mira (2010). In the model, the spatial distribution of non-tradable
services supply is endogenously determined by local characteristics, the spatial distribution of consumers,
and their services travel. We also assume that the non-tradable services sector is subject to external
economies of scale, which is the most common reduced-form way to model spillovers in the literature.
In our model, both trip chaining and external economies of scale can generate positive spillovers.

On the one hand, when consumers make more than one purchase, they are likely to visit nearby stores
for successive purchases bedcause they face the disutility from distance. Thus, an exogenous increase
in the number of stores in one region attracts potential customers and increases demand for stores in
the same and nearby regions, which generates positive spillovers.18 On the other hand, this exogenous
increase also generates positive spillovers by raising the effective productivity of nearby stores through
external economies of scale. In Appendix B.2, we formalize this intuition by showing analytically that
these two mechanisms contribute to positive spillovers.
However, distinguishing between different spillover mechanisms is crucial because they can have

different implications for the efficiency of decentralized services markets and for regional inequality
in access to services markets. In Section 3.3, we show that consumers’ trip-chaining behavior is not
a source of inefficiency. In addition, we show in Section 5 that trip chaining does not lead to greater
regional inequality in access to services markets, despite its contribution to higher concentration. These
findings are in stark contrast to the implications of external economies of scale. External economies
of scale are generically inefficient and always lead to greater regional inequality. In Section 4, we use
an original survey on trip chaining to disentangle the role of the trip-chaining mechanism. The result
suggests that the trip-chaining mechanism alone explains a large fraction of the spillovers observed in
the data.
For expositional purposes, we introduce a model of non-tradable services in the main text in which

we take input costs and the spatial distribution of consumers as given. Appendix B.5 describes how we
endogenize input prices and the spatial distribution of consumers—who optimally decide where to live

18 Economists have long recognized that spatially clustered firms can potentially increase profits from larger aggregate
demand—a market size effect that encourages clustering.
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and where to work within a city—in our baseline model in a way that does not change our estimation
procedure. In our counterfactual exercises, we will allow these general equilibrium forces to operate.

3.1 A Model of Non-Tradable Services

Consider a city that consists of a set of discrete zones j ∈ J ≡ {1, 2, · · · , J}, with many consumers and
stores in each zone. Zones differ in their distance to other zones, rent, wages, the location fundamentals
of services sectors, and the number of consumers nearby. A measureMi,i′ of workers with an average
income of Ii′ reside in zone i ∈ J and work in zone i′ ∈ J . These workers serve as consumers in the
services market. In this section, we focus on the services market and assume that the distribution of
workers is fixed. However, in Appendix B.5, we close the model by allowing workers to choose their
places of residence and work.
The services market consists of three sectors indexed by s ∈ S ≡ {1, 2, 3}: Food (s = 1), Retail

(s = 2), and Other (s = 3). Each sector s consists of a finite number of subsectors indexed by d ∈ Ds.
For each zone-sector-subsector pair (j, s, d), there is a continuum of monopolistically competitive firms
with measure Njsd that supply corresponding services goods. For the services market, we will use the
terms firm and store interchangeably, but we need to distinguish them from firms that produce tradable
goods.
We first characterize the utility maximization problem of consumers, which determines the demand

for services stores. In doing so, we present a tractable model of services travel with trip chaining. We
then characterize the profit maximization problem of stores. The free-entry condition endogenously
determines the spatial distribution of services stores. All omitted derivations and proofs in this section
can be found in Appendix B.

Consumers. Consider a worker who lives in zone i ∈ J and works in zone i′ ∈ J with total income I.
The consumption utility of this worker is given by19

UC
ii′(I) = max

C̃,Cr,Cw,Cℓ

(
C̃

µc̃

)µc̃(
Cr

µr

)µr
(
Cw

µw

)µw
(
Cℓ

µℓ

)µℓ

(3)

s.t. ptradableC̃ + PiCr + Pi′Cw + riCℓ ≤ I

where C̃ and Cℓ are the consumption of tradable goods and floor space, which we discuss in more detail
in Appendix B.5. Workers consume services goods through their services travel, which can start from
either their residence or workplace zone. Consumption amounts are denoted by Cr and Cw, respectively,
with the corresponding price indices Pi and Pi′ , which will be specified shortly when we model services
travel. We assume that Cobb-Douglas shares sum to 1, µc̃ + µr + µw + µℓ = 1.

Services Travel. We model services travel with trip-chaining behavior in a way that can easily be
embedded in quantitative urban models. We draw on the data patterns of services travel and trip
chaining we document in Section 2 to inform our modeling choices. Our priority is to maintain

19 The final utility depends on both consumption utility and residential amenity. See Appendix B.5.
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Figure 4. Timeline of Services Travel

tractability and gravity equations, which we achieve by the extreme value assumption and the recursive
structure of the dynamic discrete choice framework.20

We consider a consumer who starts her services travel from zone i, which can be either her residence
zone or workplace zone, with a slight abuse of notation. The services travel consists of multiple
purchases, and the timeline is as follows. The consumer’s first decision is to determine the sector
and location of the initial purchase. We assume the consumer randomly draws a sector s ∈ S with
probability αs, where

∑
s∈S αs = 1, and then chooses a region j ∈ J for her initial purchase. After the

first purchase, the consumer decides whether to continue her services travel with probability β ∈ [0, 1)

or return to region i with probability 1− β. If she chooses to continue her services travel, she randomly
draws a new services sector s′ ∈ S, independent of the previous sector choice s, then chooses a new
region k ∈ J for her second purchase.21 In this case, she travels from region j to region k. Importantly,
her disutility from distance is measured with respect to the previous region j, not the initial region
i. This continues until the consumer decides to end her services travel.22 The timeline and a specific
instance of services travel are illustrated in Figure 4.
We first formulate the consumer’s problem for each purchase. Consider a consumer who visits

zone j to make a purchase in sector s. Given spending e for this purchase, she maximizes the effective
consumption qjs:

q∗js = max
{qjsd(ω)}d,ω

(∑
d∈Ds

ϕ
1
σ
jsd · q

1− 1
σ

jsd

) σ
σ−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡qjs

where qjsd =

(∫ Njsd

0
qjsd(ω)

1− 1
ρ dω

) ρ
ρ−1

s.t.
∑
d∈Ds

∫ Njsd

0
pjsd(ω)qjsd(ω) dω ≤ e,

20 An alternative modeling approach, following Gentzkow (2007), involves modeling consumers’ discrete choice while
allowing them to choose any subset from the choice set, which can create complementarities between goods. However, this
approach requires solving a combinatorial problem, which can be challenging to achieve tractability and gravity equations.
Moreover, when applied at region level, this approach does not permit consumers to visit the same region multiple times,
which limits its ability to explain spillovers within a location.

21 The assumption that the new sector choice is independent of the previous sector is consistent with the services travel
pattern documented in Section 2.3. In Appendix A.1, we demonstrate that other assumptions on services travel we make in
this section are also supported by the data.

22 Although consumers usually do not plan their entire travel in advance, they are forward-looking and consider the
possibility of continuing their travel when deciding where to go for their first purchase.
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where qjsd(ω) is the quantity purchased in a store ω in (j, s, d) pair; pjsd(w) is the corresponding price;
and ϕjsd is an exogenous preference shifter. The utility function has a nested CES structure in which
the upper tier aggregates quantities across subsectors and the lower tier aggregates quantities across
individual stores within a subsector.23 We assume that stores in different subsectors are substitutable,
and stores within a subsector are even more substitutable, 1 < σ ≤ ρ. As is standard with nested CES
utility, the maximized effective consumption is given by q∗js = e

pjs
, where pjs is the corresponding CES

price index,

pjs =

(∑
d∈Ds

ϕjsd · p1−σ
jsd

) 1
1−σ

where pjsd =

(∫ Njsd

0
pjsd(ω)

1−ρ dω

) 1
1−ρ

.

We now turn our attention from individual purchases to services travel. Let sequential purchases
be indexed by t = 0, 1, 2, . . . . For each purchase t, a realization of idiosyncratic shocks, ε⃗t = (εjt )

j , and
a realization of the sector, st, together define the state variable σt = (ε⃗t, st). We use σt to denote the
history up to time t, which has unconditional probability π(σt). The expected value from services travel
starting from i with expected total spending equal to E is given by

Ṽ (i, E) = max
{qt(·),jt(·)}t

∞∑
t=0

βt
∑
σt

(
U(qt(σ

t))− d̃(jt−1(σ
t−1), jt(σ

t)) + νε
jt(σt)
t

)
π(σt) (4)

s.t.
∞∑
t=0

βt
∑
σt

qt(σ
t)pjt(σt)s(σt)π(σ

t) ≤ E (5)

where j−1(σ
−1) = i. We assume U(·) ≡ log(·), which is a common choice in the dynamic discrete

choice literature.24 After drawing a sector for purchase t, the consumer observes the idiosyncratic
component of utility ε⃗t, which follows a type I extreme value distribution. The consumer then chooses
where to visit, jt(σt), and how much to consume, qt(σt), for purchase t. Traveling between regions
j and j′ entails disutility d̃(j, j′), which represents the spatial frictions in services consumption. We
assume that d̃(j, j′) is given by τd(j, j′) + φ1j ̸=j′ , where d is the distance between two regions, and the
second term captures the border effect. In Appendix B.2, we show that we need to assume 1 + 1

ν < ρ to
guarantee the stability of the equilibrium. We maintain this parameter restriction throughout the paper.
In Appendix B.1, we prove that it is optimal for consumers to equalize the expenditure across

purchases, independent of the regions and sectors they visit. Using this fact, we show that the
maximization problem (4) can be recursively expressed as

Ṽ (i, E) ≡ V (i, e) = E

[∑
s

αs

(
max

j

{
U(e/pjs)− d̃(i, j) + βV (j, e) + νεj

})]
(6)

23 An alternative interpretation of the nested CES utility structure is that once a consumer arrives in zone j to make a
purchase in sector s, they observe preference shocks correlated within sectors and choose the individual store (d, ω) that
provides the highest utility. See Verboven (1996) for the equivalence between nested logit models and nested CES models.

24 Note that log utility with a type I extreme value distributed additive error term is equivalent to linear utility with a Fréchet
distributed multiplicative error term.
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where V (i, e) is the expected value from services travel starting from i with an equalized per-purchase
expenditure e, and e and E are related by E = e + βe + β2e + · · · = e

1−β . The expectation is taken
over realizations of the idiosyncratic shocks. We borrow this recursive formulation from the dynamic
discrete choice literature, but with β representing the probability of continuing services travel, rather
than the discount factor. Using standard extreme-value algebra, we can further simplify this value to

V (i, e) =
∑
s

αsν log

(∑
j

exp
(
U(e/pjs)− d̃(i, j) + βV (j, e)

)1/ν)
. (7)

Finally, we define the consumption index for services travel starting from zone i with per-purchase
spending e as25

C(i, e) ≡ exp
(
(1− β) · V (i, e)

)
. (8)

We can show that this consumption index is linear in spending e. This allows us to define the price index
of services travel from zone i, denoted by Pi, as the amount of per-purchase spending e needed to buy
one unit of consumption index. In other words, in the consumption utility maximization problem (3), a
worker who lives in zone i and works in zone i′ has to pay PiCr + Pi′Cw in order to consume Cr and
Cw units of consumption goods from services travel.

Services Stores. Within each zone-sector-subsector pair (j, s, d), there is a measure Njsd of homoge-
neous stores indexed by ω. Under monopolistic competition, the stores choose how much to produce
given the inverse demand function they face. In particular, they maximize the following profits net of
operating costs:

πjsd ≡ max
pjsd(ω), qjsd(ω),

Hjsd(ω), Ljsd(ω)

pjsd(ω)qjsd(ω)−
∑
j

(
rjHjsd(ω) + wjLjsd(ω)

)
− (ρ−1)σ−1

ρσ · Cjsd

subject to the inverse demand function and production function. Here, qjsd(ω) is the quantity produced;
pjsd(ω) is the price they set; Hjsd(ω) and Ljsd(ω) are the land and labor they use in production; rj and
wj are corresponding input prices; and Cjsd is a fixed operating cost with a convenient normalization
(ρ−1)σ−1

ρσ . The inverse demand function comes from the consumer’s utility maximization and will soon
be characterized. The technology is given by

qjsd(ω) = Ajsd ·Hjsd(ω)
γLjsd(ω)

1−γ ,

where Ajsd ≥ 0 is the common productivity of stores in (j, s, d). The measure of stores Njsd is
determined by the free entry condition, πjsd = 0. Note that we allow for the possibility of Ajsd = 0, in
which case we have Njsd = 0.

25 By applying the exponentiation operation to counteract the logarithmic operation in U , we achieve the linearity necessary
to define the price index for services travel. We also multiply the expected value by (1−β) to offset the impact of continuation
probability β on the expected number of purchases, 1

(1−β)
, This isolates the effect of combining purchases through trip

chaining, holding fixed the expected number of purchases.
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External Economies of Scale. We introduce external economies of scale as an additional force of
agglomeration beyond the trip-chaining mechanism. We allow the productivity Ajsd and fixed operating
cost Cjsd of a region to depend on the size of its services sector. In the literature on agglomeration, size
is often measured in terms of total employment. However, in our model, the production of services
goods requires not only labor but also land and fixed costs for store creation. Therefore, we assume
that productivity and fixed operating costs depend on the total resources spent on production and store
creation in region j:

Ajsd = Ajsd(Υ1j ,Υ2j)

Cjsd = Cjsd(Υ1j ,Υ2j)

where Υ1j =
∑

s,d
cjsd
Ajsd

(∫ Njsd

0 qjsd(ω) dω
)
and Υ2j =

∑
s,dCjsdNjsd represent the total resources

expended on production and variety creation for region j, respectively.

3.2 Equilibrium

We start with the definition of equilibrium. Given input prices {rj , wj}, the consumer distribution {Mii′},
and their average income {Ii′}, the equilibrium of the non-tradable services market consists of a set of
allocations {qjsd(ω)}, prices {pjsd(ω)}, the distribution of stores {Njsd}, and the values of productivities
and fixed operating costs {Ajsd, Cjsd} such that (i) consumers optimally choose their consumption plans
given prices and the distribution of stores; (ii) stores optimally choose their production plans and prices
given the demand they face; (iii) productivities and fixed operating costs are endogenously determined,
(iv) all markets clear; and (v) the free entry condition is satisfied. We first characterize the solution of the
consumer’s utility maximization problem and then use the result to solve the store’s profit maximization
problem.

Consumer Problem. Consumers solve a standard discrete choice problem (6), and it is well known
(e.g., see Train, 2003) that the probability of choosing region j for sector s consumption from region i
is given by

πs
ij ≡ Pr(i → j|s) =

exp
(
− log pjs − d̃(i, j) + βV (j)

)1/ν∑
j′∈J

exp
(
− log pj′s − d̃(i, j′) + βV (j′)

)1/ν (9)

where V (j) ≡ V (j, 1). This yields a structural gravity equation for services travel flows for each
sector. In Sections 4 and 5, we assess the level of regional inequality, with respect to access to the
services market and examine how it is affected by the economic environment. To this end, we define
services market access (SMA) for zone i as the inverse of the price index 1/Pi. Services market access
summarizes the impact of the spatial distribution of services stores on the attractiveness of zone i as a
starting point for services travel (Donaldson and Hornbeck, 2016). For instance, a zone with high SMA
indicates that there are many stores located in or around the zone, which makes it a more desirable
starting point for services travel.
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Definition 1 (Services Market Access). The services market access SMAi for zone i is recursively
defined as

SMA
1/(1−β)
i =

∏
s

(∑
j

(
p
−1/ν
js · exp(−d̃(i, j))1/ν · SMA

β/(ν(1−β))
j

))αsν

.

Store Problem. With this characterization of consumer choices, we turn to the store’s problem. We
start with two observations. First, consumers spend a share µr

c (a share µw
c , respectively) of their income

on services travel that starts from their residence zone (workplace zone, respectively). Second, consumer
demand is homogeneous of degree one with respect to expenditure. These two observations imply that
what is important for firms is the effective distribution of consumers, {Ei}, which is defined as

Ei ≡ µr

∑
i′∈J

Mii′ · Ii′ + µw

∑
i′∈J

Mi′i · Ii.

Then, it is as if there were a single representative consumer in each zone i who spends Ei on services
travel and always starts the services travel from zone i.
In Appendix B.1, we show that the total consumer spending in region j and sector s is given by

Rjs ≡
∞∑
t=0

(1− β)βtαsE
TΠtπs

j = (1− β)αsE
T(I − βΠ)−1πs

j , (10)

where E = (E1, · · · , EJ)
T is the vector of the effective distribution of consumers; πs

j = (πs
1j , · · · , πs

Jj)
T

denotes the vector of location choice probabilities; and Π is a J × J matrix with (i, i′)-element
πii′ =

∑
s αsπ

s
ii′ . Given the aggregate demand on (j, s), the demand for an individual store, qjsd(ω),

is isoelastic, which results in constant-markup pricing, pjsd(ω) = ρ
ρ−1

cjsd
Ajsd
, where the unit cost cjsd is

given by cjsd =
(
rj
γ

)γ( wj

1−γ

)1−γ
. See Appendix B.1 for details.

The number of stores, Njsd, is determined by the free-entry condition, which equates profits with
operating costs. We summarize the result in the following proposition.

Proposition 1 (Number of Stores). The number of stores in (j, s, d) is determined by firm optimization
and the free-entry condition:

N
1−σ−1

ρ−1

jsd = C−1
jsdÃ

−(1−σ)
jsd c1−σ

jsd p
−(1−σ)
js (1− β)αsE

T(I − βΠ)−1πs
j

where Ãjsd = Ajsd ·ϕ
1

σ−1

jsd is the composite productivity of stores in (j, s, d), which combines productivity
and consumer preferences.

In Section 4, we will confront our structural model with the data by nonlinearly estimating the
structural parameters. Before moving to the estimation, however, a first-order approximation analysis
similar to those in Costinot et al. (2019) and Fajgelbaum et al. (2021) would be helpful to understand
the role of trip chaining and external economies of scale. Following their approach, Appendix B.2
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presents analytical results that characterize the effects of these mechanisms on the spatial distribution
of services stores. In particular, we find that a favorable shock in a sector s′ ̸= s has a positive effect on
the number of stores in sector s in the same region. This effect vanishes as the degree of trip chaining
and the external economies of scale approach zero. In Appendix B.3, we use these results to establish
a theory-consistent specification for the reduced-form estimation of spillovers, which corresponds to
column (4) of Table 1. This specification yields an IV coefficient of interest that converges in probability
to a positive value, which again vanishes as the degree of trip chaining and the external economies of
scale go to zero. In sum, through the mechanisms of trip chaining and external economies of scale, our
structural model can qualitatively match the reduced-form evidence of spillovers presented in Section 2.2.
In Section 4, we further show that this model can quantitatively match these patterns.

3.3 Efficiency Properties of Equilibrium

In this section, we demonstrate the different efficiency properties of trip chaining and external economies
of scale, although both are potential explanations for spillovers in the services market. On the one
hand, trip chaining itself is not a source of inefficiency. Trip-chaining behavior only affects the mapping
from underlying quantities to utility, as formalized in Appendix B.4, so in a hypothetical world with
no underlying inefficiencies, we could invoke the first welfare theorem to conclude that trip chaining
does not introduce inefficiency. However, the presence of monopolistic distortions complicates the
efficiency implications of trip chaining. Nevertheless, we can show that trip-chaining behavior neither
exacerbates nor mitigates monopolistic distortions, which implies that trip chaining does not introduce
any additional inefficiency. On the other hand, when spillovers arise from external economies of scale,
the decentralized economy is generically inefficient. This observation suggests that the presence of
spillovers in the data does not necessarily indicate inefficiency in non-tradable services markets. Indeed,
in Section 4, we find that the trip-chaining mechanism largely explains the observed spillovers, which
implies that the non-tradable services market is close to efficient.

Efficiency Properties of Trip Chaining. Our argument proceeds in two steps to show that trip-chaining
behavior does not lead to additional inefficiency. For the purpose of this discussion, we assume for the
moment the absence of external economies of scale. We start with a constrained social planner problem
that focuses on resource allocation within the services market. The social planner maximizes social
welfare under the constraint that the resource allocation between tradable goods consumption and the
services market cannot be changed. We assume that the social planner maximizes the Pareto weighted
sum of the log utilities of consumers, where the Pareto weight is proportional to their income. This
particular choice of Pareto weights guarantees that the decentralized allocation is constrained efficient
when trip chaining is not allowed (β = 0). By considering this benchmark social planner problem, we
can exclusively examine the potential inefficiency that arises from the trip-chaining mechanism.
In this economy, there are two potential sources of inefficiency in resource allocation. The

first is the inefficient allocation of resources across consumption regions, and the second is the
inefficient allocation of resources between production and store creation within a consumption region,

19



which reflects the quantity-diversity trade-off discussed by Dixit and Stiglitz (1977). The first part
of Proposition 2 shows that the decentralized resource allocation within the services market—across
regions and between production and variety creation—remains efficient regardless of the presence of
trip chaining. Further details and formal proofs of the results presented in this section can be found in
Appendix B.4.26 Importantly, the proof does not rely on the specific modeling of trip chaining, as long
as the model features a constant elasticity of substitution between individual stores. For example, the
result holds when consumers plan their entire itinerary, including the number of trips and where to visit,
before starting their services travel.
In addition, we consider an unconstrained social planner problem that involves resource allocation

between tradable goods consumption and the services market. Due to the underlying monopolistic
distortions in the services sector, the unconstrained social planner would reallocate resources from
tradable goods consumption to nontradable services consumption and store creation, consistent with
the finding of Dixit and Stiglitz (1977). However, this inefficiency does not interact with trip chaining,
which means that the amount of resource reallocation is independent of the value of β. In particular,
the second part of the proposition shows that the social planner increases the number of non-tradable
services stores proportionally more than the decentralized number of stores, but this proportionality
does not depend on the presence of trip chaining. Based on these observations, we conclude that the
trip-chaining mechanism does not represent an additional source of inefficiency in this economy.

Proposition 2 (Efficiency Properties of Trip Chaining).

(1) When trip chaining is not allowed (β = 0), the decentralized equilibrium coincides with the solution
to the constrained social planner problem, where the Pareto weights on the log utilities of consumers
are proportional to their income. Even when trip chaining is allowed (β > 0), the decentralized
equilibrium still aligns with the solution to the same constrained social planner problem with
exactly the same Pareto weights.

(2) The unconstrained social planner chooses the number of non-tradable services stores {N∗
jsd} given

by
N∗

jsd = χ ·Nde
jsd,

where Nde
jsd represents the number of stores in the decentralized equilibrium and χ > 1 is a constant

that is unaffected by the presence of trip chaining. The optimal allocation can be implemented
by the combination of a tax on tradable goods and a subsidy on non-tradable services, which are
again independent of the presence of trip chaining.

Efficiency Properties of External Economies of Scale. Again, we consider both constrained and un-
constrained social planner problems to illustrate the inefficiency of the services market with external
economies of scale. The first part of Proposition 3 shows that the non-tradable services market with
external economies of scale is generically constrained inefficient, except for the special case of isoelastic

26 These results extend the CES efficiency results established by Dixit and Stiglitz (1977) and Dhingra and Morrow (2019)
by incorporating nested aggregation, heterogeneous consumers, and external economies of scale.
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external economies of scale. We define external economies of scale as isoelastic when they take the
form of either

Ajsd = Ājsd ·Υε
1j and Cjsd = C̄jsd ·Υ−ε

2j

or
Ajsd = Ājsd ·Υε

j and Cjsd = C̄jsd ·Υ−ε
j ,

where Υj = Υ1j +Υ2j . In Appendix B.4, we characterize the inefficiency in terms of both interregional
and intraregional resource allocation. In addition, the presence of external economies of scale exacerbates
the inefficient allocation of resources between tradable goods and non-tradable services. In particular,
the second part of the proposition shows that the extent of resource reallocation increases with the
degree of external economies of scale. Taken together, these findings highlight the inherent inefficiency
that arises in the non-tradable services market with external economies of scale.

Proposition 3 (Efficiency Properties of External Economies of Scale).

(1) With isoelastic external economies of scale, the decentralized equilibrium solves the social planner
problem. However, beyond this special case, the non-tradable services market is constrained
inefficient in terms of both interregional and intraregional allocation.

(2) With isoelastic external economies of scale, the unconstrained social planner chooses the number
of non-tradable services stores {N∗

jsd} as

N∗
jsd = χ(ε) ·Nde

jsd,

where Nde
jsd represents the number of stores in the decentralized equilibrium, and χ(ε) > 1 is an

increasing function of ε. The optimal allocation can be implemented through a combination of a
tax on tradable goods and a subsidy for non-tradable services.

Nonparametrically estimating the specific form of external economies of scale is beyond the scope
of this paper. Therefore, in the next section, in which we estimate the structural model, we make the
assumption of isoelastic external economies of scale and focus on estimating a single parameter ε.27 It
is worth noting that both forms of isoelastic external economies of scale are isomorphic in terms of the
changes in endogenous variables, because the ratio Υ1j : Υ2j : Υj = 1 : (ρ− 1) : ρ remains constant in
the decentralized equilibrium.

4. Estimation

In this section, we discuss the quantification of the model with particular emphasis on estimating the
degree of trip chaining and external economies of scale. We estimate the former using the results of our
original survey, and the latter is estimated to match residual spillovers. In particular, we introduce a

27 Thus, in the estimated model, external economies of scale do not lead to constrained inefficiency. However, as emphasized
in Proposition 3, this is just a knife-edge case.
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novel Bartik-motivated generalized method of moments estimation approach that allows us to exploit
exogenous variation from a shift-share design, while accounting for spatial linkages.

4.1 Parameter Estimation

We estimate the parameters of the model in four steps. First, the model-implied gravity equation allows
us to estimate the parameters τ̃ ≡ τ/ν and φ̃ ≡ φ/ν without solving the full model. Second, we calibrate
a subset of parameters using our data, which includes the degree of trip chaining. Third, we estimate
the remaining parameters for our model of non-tradable services in Section 3.1. As in Ahlfeldt et al.
(2015), we invert the model to back out the values of exogenous variables that rationalize the observed
services market data. We then use these inverted data as input for the GMM estimation, with moments
motivated by the reduced-form evidence. Finally, we calibrate the parameters for the general equilibrium
component of our model introduced in Appendix B.5. In this section, we focus on the first three steps
of the estimation procedure. See Appendix C.3 for estimation of the general equilibrium parameters.

Gravity Equation. From the location choice probability of consumers, we derive a gravity equation for
services travel, which is similar to the conventional gravity equation for trade or commuting flows:

lnπs
ij = −τ̃ d(i, j)− φ̃1{i ̸= j}+ FEjs+ FEis+ϵij ,

where πs
ij is the probability that a consumer from region i chooses region j when purchasing a good

in sector s, and d(i, j) is the travel time distance between two zones, measured in minutes.28 The
destination–sector fixed effect FEjs captures the price index and the expected continuation value, while
the origin–sector fixed effect FEis measures market access for consumers. The normalized coefficients
τ̃ = τ/ν and φ̃ = φ/ν represent the semi-elasticity of services travel and the border effect, respectively.
As described in Fact 1, a significant fraction of consumers stay in the same zone when purchasing
services goods. This observation motivates us to include the border effect to improve model fit. Finally,
the error term ϵij captures the measurement error that is independent of the other variables on the
right-hand side.
Table 2 reports estimation results. Column (1) reports the results of OLS estimation without the

border effect. This estimate implies that an additional 10-minute increase in distance reduces services
travel flows by about 30%. When the border effect is included in Column (2), the estimate drops to
0.016, since the border effect accounts for the significant decline in services travel around zero distance.
In addition, our gravity fit improves with inclusion of the border effect, increasingR-squared from 0.533
to 0.592.

28 Travel time varies depending on the transportation mode chosen. But, for simplicity, we assume that consumers choose
the optimal public transportation combination, as explained in Section 2.1. We use the same distance measure for commuting
decisions in the general equilibrium model.
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Table 2: Estimation Results: Gravity Equation

OLS PPML

(1) (2) (3) (4)

Distance (τ̃ ) 0.033∗∗∗ 0.016∗∗∗ 0.161∗∗∗ 0.152∗∗∗
(0.0011) (0.0010) (0.0014) (0.0025)

Border effect (φ̃) 1.084∗∗∗ 0.357∗∗∗
(0.0380) (0.0644)

Fixed Effects ✓ ✓ ✓ ✓
Observations 8,409 8,409 522,512 522,512
(pseudo) R2 0.533 0.592 0.539 0.539

Notes: Data source: Household Travel Survey (2016) for both weekdays and weekends. Distance is
measured in minutes. Fixed effects represent destination-sector (j, s) and origin-sector (i, s) fixed effects.
Robust standard errors are shown in parentheses, with ∗∗∗ p < 0.001. For PPML, we report pseudo
R-squared in the last row.

Despite the large number of observations in our data, due to the granularity of our geographic unit,
we observe that a substantial fraction of pairs of regions have zero travel between them.29 To incorporate
these zero observations into estimation, in Column (3) we report the results of Poisson pseudo maximum
likelihood (PPML) estimation with the same specification (see, e.g., Silva and Tenreyro, 2006). The
semi-elasticity is 16.1% in Column (3), which is five times higher than that in Column (1) due to the
inclusion of pairs with zero travel in the estimation. In Column (4), which is our preferred specification,
we include the border effect. The result shows that an additional 10-minute increase in travel-time
distance reduces services travel flows by about 80%. The (pseudo) R-squared is reported in the last
row of the table. In addition, we present the fit of the estimated model in Figure A.3, which shows that
services travel flows are well approximated by this gravity equation.

Parameter Calibration. We calibrate five types of parameters: {αs}s, {µc̃, µr, µw, µℓ}, γ, ρ, and β. The
most important parameter is travel continuation probability β, which governs the magnitude of spillovers
from trip chaining. We calibrate this parameter directly from the Online Household Services Travel
Survey. According to the survey, the number of services stores visited for purchases is on average 1.72
per services travel, which implies β = 0.419. We then estimate the Cobb-Douglas share of each sector,
αs, directly from the revenue shares of each services sector. To calibrate Cobb-Douglas expenditure
shares of services travel, µr and µw, we calculate the ratio between the share of services travel from home
and workplace, µr

µw
, using information on the origin locations from the Household Travel Survey. Next,

we divide the total revenue of services sectors obtained from our commercial data by the total income
of workers in Seoul to compute the total expenditure share of services, µr + µw. These two moments
allow us to calibrate the values of µr and µw. The remaining parameters are difficult to calibrate from
our dataset, so we rely on aggregate moments or central values from the literature. For the share of
household spending on housing, we use µℓ = 25.3% from the Seoul Household Consumption Spending

29 Out of approximately 540K pairs of zones and sectors (=4242 × 3), we only observe flows for about 10K pairs, which
account for less than 2% of total pairs. We do not use a larger geographic unit because services travel is highly sensitive to
distance.
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Survey from 2006. This estimate is in line with those in the literature, such as Ahlfeldt et al. (2015)
and Davis and Ortalo-Magné (2011). For the Cobb-Douglas share of firm spending on commercial
floor space γ, we use 20%, which is the value commonly used in the literature (e.g., Valentinyi and
Herrendorf, 2008; Ahlfeldt et al., 2015). Finally, we set ρ equal to 9 based on Couture (2016), whose
estimates range from 8.4 to 9.2. He uses detailed information on restaurants and household travel to
estimate the elasticity of substitution across stores.

Bartik GMM. We estimate the remaining parameters of the model of non-tradable services. In
particular, we estimate ε, σ, and ν using the generalized method of moments, which proceeds in two
steps. Given the parameterized model of non-tradable services, we first back out local composite
productivity log Ãjsd by inverting the model (e.g., Berry, 1994; Ahlfeldt et al., 2015). See Appendix C.1
for details on model inversion. Note that composite productivity is a structural residual of our model,
which captures productivity and preferences. We then construct three types of moment conditions
with the composite productivity, which can be used to estimate the three parameters. These moment
conditions are based on the same identification idea as the reduced-form evidence in Section 2.30

To isolate exogenous changes in the composite productivity of each sector in each region, we compute
the predicted change in composite productivity by interacting the initial subsector composition with the
city-level growth in composite productivity across subsectors:31,32

∆ log ÃBartik
js =

∑
d′

sjsd′,0 ·∆ log ÃSeoul,sd′ .

This variable is defined analogously to the Bartik instruments in Section 2, but using composite
productivity instead of the number of stores. Our first set of moment conditions is given by

∆ log Ãjsd ⊥j ∆ log ÃBartik
js′ for all (s, s′, d) with s ̸= s′. (11)

This condition requires that the change in the composite productivity of a sector is orthogonal to the
exogenous change in the composite productivity of another sector.
For each subsector d in a region, the following instrumental variable captures the exogenous change

in the composite productivity of subsectors other than d in the region:

∆ log ÃBartik
js,−d =

∑
d′ ̸=d

sjsd′,0 ·∆ log ÃSeoul,sd′ .

30 A comparison with the approach in Section 2 is in order. In Section 2, we construct Bartik instruments based on
the number of stores, which is an endogenous variable. In this section, we instead construct Bartik instruments based on
composite productivity Ã, which provides two advantages. First, considering shocks to exogenous variables, we can get a
clearer economic interpretation of estimation results. Second, our structural model allows us to easily incorporate spatial
linkages in a theory-consistent manner. Incorporating spatial linkages in reduced-form shift-share research designs is inherently
challenging, and this limitation is often acknowledged in the literature on shift-share instruments (see, e.g., GSS). Adão,
Arkolakis, and Esposito (2020) also emphasize this point and extend the shift-share design to incorporate spatial linkages and
general equilibrium effects.

31We estimate the city-level change using leave-one-out averages excluding region j.
32 Our estimation method requires either ∆log Ãjsd ⊥ {sjs′d′,0}s′d′ , as in GSS, or ∆log ÃSeoul,sd being as-good-as-

randomly assigned, as in Borusyak, Hull, and Jaravel (2020).
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The second set of moment conditions is

∆ log Ãjsd ⊥j ∆ log ÃBartik
js,−d for all (s, d). (12)

This condition imposes orthogonality similarly to the first condition, but between subsectors within a
sector instead of between sectors. Likewise, the third set of moment conditions requires orthogonality
across nearby regions. For each region j, we calculate the weighted average of the changes in the
composite productivity of other regions, in which the weights ϱ(j, j′) are j-specific:

∆ log ÃBartik
−js =

∑
j′ ̸=j

ϱ(j, j′) ·∆ log ÃBartik
j′s′ .

In particular, we put a higher weight on region j′ if this region is a closer substitute for region j.
Specifically, we use the share of consumers in j who choose j′ for services travel as our weight. Then,
our final moment conditions can be written as

∆ log Ãjsd ⊥j ∆ log ÃBartik
−js for all (s, d). (13)

We estimate three parameters using these three types of moment conditions, (11)–(13), which are
stacked in vector form in the following moment condition:

Ej [m(Xj , {ε, σ, ν})] = 0.

GMM estimates solve

{ε̂, σ̂, ν̂} ∈ argmin
{ε,σ,ν}

(
1

J

∑
j∈J

m
(
Xj , {ε, σ, ν}

))′

W

(
1

J

∑
j∈J

m
(
Xj , {ε, σ, ν}

))
,

where W is the efficient GMM weighting matrix. We numerically minimize the objective function to
obtain GMM estimates.

Identification. Whereas the model’s complexity makes it difficult to deliver a formal argument of
identification, we can provide an intuitive explanation of how each type of moment condition separately
identifies each of the remaining parameters. First, an exogenous increase in the composite productivity
in (j, s′) has a positive spillover effect on (j, s, d) for s ̸= s′. If we postulate a weaker spillover than it
actually is, the spillover alone cannot fully explain the change in the number of stores in (j, s, d). The
remaining part should be explained by an increase in the composite productivity of (j, s, d), which results
in a spurious positive correlation between ∆ log Ãjsd and ∆ log ÃBartikjs′ . Holding fixed the value of the
calibrated parameter β, the parameter ε mainly controls the magnitude of this spillover effect. Thus,
the first set of moment conditions requires selecting ε in such a way that these terms are uncorrelated
across sectors. Similarly, an exogenous increase in the composite productivity in (j, s,−d) has both a
spillover effect and a negative competition effect on (j, s, d). Holding fixed the spillover effect controlled
by β and ε, if we assume too small competition effects, a spurious negative correlation arises between
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∆ log Ãjsd and ∆ log ÃBartikjs,−d. The parameter σ mainly controls the magnitude of this competition effect.
Therefore, the second set of moment conditions requires that, with β and ε held fixed, the parameter σ
is chosen to render these terms uncorrelated across subsectors. Finally, an exogenous increase in the
composite productivity in a given zone j has both a positive spillover effect and a negative competition
effect on nearby zones, −j. Holding fixed the spillover effect again, the parameter ν mainly controls the
magnitude of the spatial competition. Thus, the third set of moment conditions requires that, with β, ε,
and σ held fixed, the parameter ν needs to be selected to ensure that these terms are uncorrelated across
zones.

Estimation Results. Table 3 summarizes estimation results.33 First, we find that the estimated degree
of external economies of scale ε is not significantly different from zero. This finding suggests that
the trip-chaining mechanism dominantly accounts for spillovers in the services market, and leaves
limited room for other mechanisms to contribute significantly. Although it is difficult to find a directly
comparable estimate, this estimate stands in stark contrast to the tradable goods sector, for which the
literature extensively documents evidence of the presence of strong scale economies, which contribute
to the agglomeration of industrial production. This literature emphasizes several mechanisms at play,
such as sharing, matching, and learning (Duranton and Puga, 2004), but our result indicates that these
mechanisms play a limited role in the services market.34

We find that the dispersion of taste shocks ν is about 0.35. Our estimation results suggest that
consumers’ idiosyncratic preferences aremore dispersed than their preferences for residence orworkplace
choices, which are estimated by Ahlfeldt et al. (2015). Finally, our estimate of substitution across
subsectors σ is about 4.8. This estimate is comparable to that of Couture (2016), who estimate the
elasticity of substitution across different types of restaurant cuisine.

4.2 Estimation Results: SMA Inequality

Equipped with the estimated model, we can compute each region’s services market access (SMA), which
represents the value that consumers in each region derive from services travel. We can compute SMA
only after estimating the model, because SMA depends not only on the spatial distribution of services
stores but also on a number of key parameters—travel cost parameters, elasticities of substitution, and,

33 In this section, we use data from the years 2014, 2015, and 2018, which is different from the data used in Section 2,
where we used data from the years 2014, 2015, and 2019. In 2019, the data sources for constructing sales estimates were
changed, and we find that this caused noise that differs across subsectors. The number of stores does not have the same issue,
since it has been consistently collected. The estimation results in Section 2 would remain qualitatively similar if we had used
the year 2018 instead.

34 This result is perhaps not surprising, given the distinctive features of the services market. First, mechanisms based on
the relationship between firms, such as input-output linkages, are not relevant for the services sector because services firms
mostly cater to households rather than other services firms. Moreover, the geographic unit of analysis in our study is much
smaller than those used in the literature, so the agglomeration mechanism for services should have a higher rate of spatial
decay. In addition, the mechanisms discussed in the literature, such as comparison shopping, tend to operate within a sector
rather than across sectors, which is inconsistent with our findings of across-sector spillovers in Section 2. In contrast, our
trip-chaining mechanism provides a natural explanation for across-sector spillovers with a high rate of spatial decay. This
arises from consumers’ disutility from travel, which is highly sensitive to distance, and from trip chaining, which combines
purchases from different sectors.
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Table 3: Estimation Results

Description Value Source
τ
ν Services travel elasticity 0.152 Gravity

(0.002)
φ
ν Services travel border effects 0.357 Gravity

(0.064)
β Travel continuation probability 0.419 Online Survey

(0.006)

ε External economies of scale 0.006 GMM
(0.045)

σ Substitution across subsectors within a sector 4.851 GMM
(0.131)

ν Dispersion of taste shocks 0.351 GMM
(0.000)

ρ Substitution across stores within a subsector 9 Couture (2016)
γ Share of firm expenditure on floor space 0.2 Valentinyi and Herrendorf (2008)
αs Expenditure share on Food, Retail, Other 0.31, 0.51, 0.18 Revenue shares
µr, µw Share on services from home and workplace 0.209, 0.062 Spending share
µℓ Share on housing 0.25 Literature

Notes: Standard errors from the gravity equation estimation and efficient GMM estimation are in parentheses.

most importantly, the trip-chaining parameter. Together, they map the spatial distribution of services
stores to the spatial distribution of SMA.
In the left panel of Figure 5, we plot the histogram of (log) SMA. The standard deviation of (log)

SMA across zones is 0.22, which indicates limited but nonnegligible variation across regions. For
example, a consumer who begins their services travel in the top 25% zone can enjoy 33% higher welfare
per spending compared with those who begin their services travel in the bottom 25% zone.35 As an
alternative measure of inequality, we plot the Lorentz curve for SMA in the right panel of Figure 5. The
corresponding Gini coefficient is 0.12.
However, the dispersion of the number of services stores is much larger than that of the SMA. In the

middle panel, we plot the histogram of the (log) number of services stores, which has a much thicker
right tail. The standard deviation of the (log) number of stores is 1.03, which is 10 times larger than that
of the SMA. In addition, the interquartile ratio and the Gini coefficient are 3.29 and 0.56, respectively,
both of which are substantially larger than those of the SMA.36 Thus, we conclude that inequality in
access to the services market is significant, but less than expected from the uneven distribution of stores.
The gap between these inequalities arises from the possibilities of services travel and trip chaining:
consumers can travel to other regions and make multiple purchases in regions with many stores without
incurring additional travel costs.

35 For all statistics, we use the effective population distribution—i.e., the weighted sum of residence and population
distribution—and assign 77% weight to the former based on the share of travel starting from home.

36 The Gini coefficient of household income in Korea is 0.314 (World Bank, 2016).
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Figure 5. Spatial Disparity in the Number of Stores and SMA

In Appendix D.1, we show that SMA inequality exacerbates real income inequality between high-
skilled and low-skilled workers. This is because high-skilled workers tend to live and work in areas
with better access to the services market. Since consumers allocate a significant portion of their income
(27%) to services goods, SMA—the inverse of the price index of services goods—has a significant
impact on the price index they face. Indeed, the impact of SMA inequality on real income inequality is
substantial and comparable to that of housing rents.

5. Importance of Spillovers from Trip Chaining

In this section, we examine the importance of spillovers from trip chaining. We first explore their
importance in agglomeration of non-tradable services stores. We then explore the welfare implications,
in which we focus on the distinctive features of trip chaining.

5.1 Spillovers and Agglomeration of Services

To investigate the importance of spillovers from trip chaining in the agglomeration of non-tradable
services, we set β to 0 to turn off trip chaining and calculate the concentration of the counterfactual
distribution of services stores. The result indicates that trip chaining plays a substantial role in
agglomeration of services. In the left panel of Figure 6, we present a scatter plot that compares the
log number of services stores with and without trip chaining, and in the right panel, we depict the
Lorenz curves for the distributions of services stores. Without trip chaining, the number of stores in
concentrated areas decreases significantly. The dispersion of services, as measured by the standard
deviation of the log number of stores, decreases by 35% (from 1.03 to 0.67).37 Similarly, the right panel
shows that the Lorenz curve of services stores shifts significantly, and the Gini coefficient decreases by
40%. This suggests that more than one-third of the concentration of services is attributable to spillovers
arising from the trip-chaining mechanism.

37 In Sections 5 and 6, we report the result fixing the distribution of consumers, and focus on reallocation of the services
sector. Results are both qualitatively and quantitatively similar when we use the general equilibrium model presented in
Appendix B.5 to perform counterfactual exercises. For example, turning off the trip-chaining mechanism leads to a 34%
decrease in the standard deviation of the log number of stores when we further endogenize decisions on residential areas and
workplaces, which is only 1 percentage point smaller.
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Figure 6. Importance of Trip Chaining in Agglomeration

Notes: We turn off each mechanism sequentially on top of the previous one. For example, scale
economies represent an economy in which both the trip-chaining mechanism and external economies
of scales are turned off.

In contrast, we find that external economies of scale have limited impact on the concentration of
services, as expected from the estimate of ε being close to zero. To examine the role of external
economies of scale, we set parameter ε to zero, along with trip-chaining parameter β. This eliminates all
spillover forces in the services sector. As shown in Figure 6, this causes little change to the counterfactual
distribution of services stores (represented by the red cross markers) and the Lorenz curve (red line).
The standard deviation of the log number of stores decreases by only an additional 2%. Therefore, we
conclude that spillovers explain more than one-third of the concentration in services—and of the two
spillover mechanisms, the trip-chaining mechanism accounts for about 95% of the total contribution of
spillovers.
What explains the remaining 63% of the concentration? We find that location fundamentals explain

about one-half of the rest, or about one-third of the total concentration. If we also turn off the regional
differences in location fundamentals—composite productivity and costs—the standard deviation of the
log number of stores decreases by an additional 29%. In the left panel of Figure 6, the counterfactual
distribution represented by the yellow squares is much less dispersed. Finally, the remaining 34% of
the concentration arises from differential access to consumers, which stems from the combination of
the distribution of effective consumers Ei and spatial frictions. If we further assume that there are no
spatial frictions in this economy, all services stores have the same advantage in terms of proximity to
consumers, regardless of their locations. Without differences in fundamentals or access to consumers,
the dispersion of services stores disappears completely, as shown by the purple dots in Figure 6.
The Lorenz curves in the right panel of Figure 6 confirm our results. As we turn off each channel

one by one, the curves approach the 45-degree line. The Gini coefficients decrease to 60%, 59%, 35%,
and 0% of the baseline, respectively.
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5.2 Welfare Implications of the Trip-chaining Mechanism

In Section 3.3, we discuss the efficiency implications of the trip-chaining mechanism. In particular, we
show that the spillovers that arise from trip chaining do not lead to any inefficiency in the decentralized
economy, whereas external economies of scale are generically inefficient.
In this section, we turn our attention to the effect of trip chaining on SMA inequality. As discussed

in Section 5.1, trip chaining increases the concentration of services stores and thus contributes to higher
SMA inequality. However, its total effect on SMA inequality is ambiguous due to a countervailing force.
Trip-chaining behavior allows consumers to make multiple purchases per travel, leading to a lower
disutility cost per purchase. This makes it less costly to live or work in a region with fewer services
stores nearby. Thus, holding the spatial distribution of services stores fixed, trip-chaining behavior itself
reduces SMA inequality.
Despite the significant changes in the concentration of stores we documented above, we find that

the net effect of the trip chaining on SMA inequality is close to zero due to the countervailing force.
In the left panel of Figure 7, we plot for each zone the counterfactual value of the (log) SMA when
there is no spillover from trip chaining against the actual value (with blue circles). The figure clearly
shows that trip chaining has a limited impact on dispersion of the SMA. SMA inequality, as measured
by the standard deviation of the (log) SMA, slightly increases by 4.5%. The right panel also confirms
this finding, by showing that the Lorenz curve and the Gini coefficient barely change.
To decompose the effects of the two opposing forces, we first isolate the effect of changes in the

distribution of stores. We compute SMA inequality using the counterfactual distribution of services
stores without trip chaining, but still allowing consumers to make multiple purchases per travel. These
results are represented by the red squares in the left panel of Figure 7, which shows that a lower
concentration of services stores leads to a decrease in inequality. The standard deviation of (log) SMA
becomes 12.5% smaller than the actual value.
Our analysis suggests that the trip-chaining mechanism does not exacerbate SMA inequality, despite

its substantial contribution to the concentration of services stores. This finding again highlights the
importance of identifying the mechanisms that derive agglomeration, since their welfare implications
may differ substantially. For example, if agglomeration arises from external economies of scale rather
than the trip-chaining mechanism, the countervailing force related to changes in travel patterns does not
operate. In such cases, spillovers always lead to greater inequality in access to the services market, and
an increase in concentration always goes hand in hand with an increase in SMA inequality.

6. Urban Structure in the Future

Consumption services can play a more important role in the success of cities than production (Glaeser,
Kolko, and Saiz, 2001). Couture and Handbury (2020) demonstrate that non-tradable services have been
a driving force behind recent urbanization in the United States. Our model provides insights into how
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Figure 7. Importance of Trip Chaining in SMA

the urban structure, particularly the distribution of services, may change in the future due to various
factors such as policy changes, transportation networks, or technological advances.
In this section, we focus on the impact of the rise of work from home and delivery technology, which

have unexpectedly been accelerated by the COVID-19 pandemic. In Appendix D.2, we also discuss the
effect of transportation improvements.

6.1 Work from Home

The COVID-19 pandemic has changed the way people work: Between April and December 2020, about
one-half of paid work hours in the US were supplied from home. This shift is not temporary, and
research suggests that work from home will remain at around 20% (Barrero, Bloom, and Davis, 2021).
Similarly, in Seoul, the proportion of remote or hybrid work doubled from 4.5% to 9% between 2016
and 2018, and the pandemic has further accelerated this trend, with around 18% of workers experiencing
remote work in 2022.
Studies provide evidence that work from home may have significant impacts on the distribution of

services. However, its impacts to date have been uneven across cities, and its long-term consequences
remain uncertain. While services stores in large US cities become less spatially concentrated, shifting
from dense city centers to suburban areas (e.g., Althoff et al., 2022; Duranton and Handbury, 2023;
Duguid et al., 2023), Seoul did not experience a decrease in the concentration of services stores during
the pandemic. According to Seoul Commercial Area Data, from 2019 to 2022, about one-half of the top
10% zones with the largest share of working population experienced growth above the citywide median
level. In addition, the standard deviation of the log number of stores across zones did not decrease, but
instead increased by 8%. Which characteristics of cities determine the impact of work from home? And
furthermore, how will it reshape the distribution of services in the long run?
The spatial linkages of services consumption between residential and business areas are critical in

understanding the impact of the rise of work from home. As workers shift to working remotely, the
distribution of consumers also shifts from business areas to residential areas, which are typically less
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Figure 8. Changes in the Number of Stores after Work from Home

concentrated in the data. However, it remains unclear whether this shift will actually lead to a reduction
in the concentration of services, since a significant proportion of purchases involve services travel. If
spatial linkages between residential and business areas are strong, consumers may still travel for services
from their homes to business areas while working from home.
To analyze the long-run effects of work from home, we assume that 20% of workers will work

remotely in the future, as predicted by Barrero, Bloom, and Davis (2021), and compute the counterfactual
distribution of services stores. When working from home, consumers always start their services travel
from home rather than from their workplace. In the left panel of Figure 8, we plot the percentage change
in the number of stores after the rise of work from home against the current number of stores. Although
concentrated areas tend to experience a decline in the number of stores, the magnitude of the change in
concentration is limited, which is qualitatively consistent with the empirical pattern we document above.
The standard deviation of the log number of stores decreases by only 1.7%.
We find that the limited impact on services concentration is due to the strong spatial linkages between

business and residential areas. Specifically, the demand for services in certain concentrated business
areas remains high because they continue to attract a significant number of consumers even when they
work from home. This is confirmed in the right panel of Figure 8, in which we plot (with blue circles)
the change in the number of stores against the share of the workplace population. The figure shows that
regions with a high share of the workplace population do not necessarily experience significant declines
in the number of stores. Although some zones with a workplace population share above 70% experience
a significant decrease in the number of stores (about 10%), many of these zones experience only a minor
decline (less than 1%). To further illustrate this point, Figure 8 also plots (with red circles) the effect of
work from home on the number of stores in a model in which consumers purchase services only in the
zone in which they begin their services travel. In this case, we find a strong relationship between the
share of the workplace population and the change in the number of stores.
The impact of spatial linkages can clearly be seen in Figure 9. We plot the share of the workplace

population and the change in the number of stores on the map of Seoul. We can compare the two largest
business areas in Seoul, Jong-ro in the north and Gangnam in the southeast (see Figure 9a). Although
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Figure 9. Work from Home: Map

Jong-ro has a higher share of the workplace population than Gangnam, it experiences a smaller decline
in the number of services stores after the rise of work from home (see Figure 9b). Jong-ro has stronger
spatial linkages with its surrounding residential areas. As a result, it continues to attract consumers
from nearby regions, which offsets the decline in demand from local consumers who work in the area.
In contrast, Gangnam, which is surrounded by several business areas, faces challenges in attracting
consumers when people work from home.

6.2 Delivery Services

As transportation and internet technology continue to improve, the importance of delivery for non-
tradable services has grown rapidly. Consumers in the U.S. can now buy retail goods online (e.g.,
from Amazon) and order food for home delivery (e.g., Uber Eats). South Korea has also experienced
significant growth in delivery services in the Food and Retail sectors. Online retail sales in South Korea
almost doubled from $94 billion to $150 billion between 2017 and 2021. The share of restaurant sales
that are delivered to consumers has also grown rapidly in recent years, and accounts for 15% of total
sales (Statistics Korea, 2022). Delivery services eliminate the disutility from distance, which renders
non-tradable services effectively tradable. Thus, delivery technology can have a significant impact on
both the spatial distribution of services firms and the welfare of consumers.
To examine the impact of delivery services, we consider a counterfactual scenario inwhich θ ∈ [0, 0.5]

fraction of the total demand for the Food and Retail sectors is fulfilled by delivery. We assume that spatial
frictions are completely eliminated in the Retail sector and reduced by 50% in the Food sector when
services are delivered, which is modeled by adjusting distance disutility parameters (φ, τ) accordingly.38

Improvements in delivery technology lead to a substantial reduction in concentration. In the left
panel of Figure 10, we plot how the concentration decreases as we increase the share of delivery services.
For example, when one-half of total demand is fulfilled by delivery (θ = 0.5), the standard deviation

38 For the restaurant sector, spatial frictions decrease but still exist even when delivery is available because delivery platforms
typically charge fees based on distance. We choose 50% as an approximation, but the results are qualitatively the same
independent of a specific number we choose. In contrast, for the retail sector, shipping costs are flat within a city.
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of the log number of stores decreases by 19%. Advances in delivery technology help services stores
located in unfavorable geographic locations by reducing spatial frictions. For example, stores located
in remote areas that were previously connected to a relatively small consumer base can now access the
entire market through better spatial linkages.
In the right panel of Figure 10, we plot the change in the number of stores in each region for each

sector. With the increasing use of delivery services, some of the demand for the Food and Retail sectors
is now being fulfilled by these services, which reduces the importance of the geographic location of
stores for revenues. As a result, stores in previously concentrated areas lose their comparative advantage,
which leads to a decline in the number of restaurants and retail stores in such regions. Interestingly, the
decline in concentration is also observed in the Other sector, which is not directly affected by delivery
services. This unique phenomenon is a consequence of trip chaining, which generates positive spillovers
across sectors within regions. As consumers visit concentrated areas less often to eat out or shop for
retail goods due to the rise of delivery services, subsequent purchases from trip chaining decrease. This
reduces demand for the Other sector in these areas, which leads to a decrease in the number of stores.
Finally, the rise of delivery services also leads to a significant decrease in welfare inequality. Welfare

inequality, as measured by the standard deviation of log SMA, decreases by 36%. Access to delivery
technology eliminates the disutility of travel, which disproportionately benefits consumers in remote
areas with previously lower SMA. This suggests that policymakers should consider investments in
delivery services or transportation technologies for nontradable goods as an effective means of reducing
inequality in access to the services market. This is particularly important given the significant impact
of SMA inequality on real income inequality, as discussed in Section 4.2.
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A. Appendix for Section 2

A.1 Online Travel Survey

In this section, we present additional results from the online survey. Although a few recent studies
document travel patterns using credit card transaction data or smartphone data, there is still limited
understanding of the details of services travel. The online survey provides a more in-depth understanding
of services travel, particularly how consumers combine multiple purchases into a single trip when faced
with spatial frictions. In particular, these findings allow us to assess whether our assumptions on services
travel in Section 3.1 are realistic.
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Travel distances. In Figure A.1, we plot the distribution of travel distances for commuting, services
travel for the first purchase, and services travel for trip chaining. First, comparing the travel distances
for commuting and the first purchase with those from the Korean Household Travel Survey in Figure 3a,
we observe that they are comparable, which reassures the quality of the online survey. Any slight
differences between the two datasets might be attributed to variation in the survey year or sampling.
Second, consumers tend to visit nearby regions for the second purchase. This observation implies that
positive spillovers from trip chaining would spatially decay fast. It is worth noting that this observed
pattern aligns with the recursive structure of our structural model. If consumers tend to travel to
concentrated areas for their first purchase, they are more likely to stay in those areas for subsequent
purchases, resulting in shorter travel distances.

Figure A.1. CDF of Travel Distance (Online Survey)

Trip chaining. The magnitude of trip chaining, represented by the average number of purchases made
during a single instance of travel, is found to be 1.72 in the online survey. We find that the average
number of purchases is comparable across types of travel. Table A.1 compares the average number
of purchases based on origin and destination types, while Table A.2 compares the average number of
purchases based on the sectors of the first purchase.39 These results suggest that it is reasonable to model
the trip chaining parameter as common for all types of travel.
In Table A.3, we present the correlation between the number of purchases and the number of stores

in the zone where the first store is located. The two numbers show a positive correlation, indicating
that consumers tend to buy more goods when they visit more concentrated areas. While we do not
endogenize the decision to continue travel or not, our estimate of the contribution of the trip-chaining
mechanism to agglomeration is conservative. If consumers are more inclined to make consecutive
purchases in concentrated areas, spillovers would be stronger in these areas, further amplifying the role
of trip chaining in services agglomeration.

Sector choices of purchases. We find that sectors of subsequent purchases do not critically depend
on the sector of the previous purchase. In Table A.4, we calculate the conditional probability of

39 In our online survey, we ask respondents to report on the travel that resulted in the most purchases in a single day in order
to maximize the number of responses with multiple purchases. As a result, the average number of purchases with travel details
is higher than the overall average.
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Table A.1: Average Number of Purchases by Origin/Destination Types

home school/workplace others

home 1.90 (0.02) 1.90 (0.07) 1.90 (0.07)
school/workplace 2.01 (0.07) 1.83 (0.05) 2.73 (0.41)
others 2.08 (0.07) 2.04 (0.17) 2.21 (0.09)
Notes: Column and row represent the type of the origin and destination respectively. We report the
standard deviation of the average in the parenthesis.

choosing each sector for the second purchase, given the sector of the first purchase among travel with at
least two purchases. We aim to examine whether there are systematic differences in these conditional
probabilities across the three different sectors of the first purchase. To this end, we also compute the
average (unconditional) probability of visits of each sector in parentheses. We find that the conditional
probabilities for the second visit do not differ significantly from the unconditional probabilities in the
parentheses. These findings provide reassurance that assuming random sector choices across purchases
would not create bias in understanding the impacts of positive demand spillovers from trip chaining.

Recursive structure and travel distances. We model services travel in a recursive manner, which
has several advantages as outlined in Section 3.1. An alternative approach would be to assume that
consumers plan their entire itinerary and optimize their travel routes accordingly. This approach may
result in different location choices for services stores, as consumers may prefer to visit stores that are
located along their routes in order to minimize travel disutility.
We test whether our model-implied travel distance is significantly different from the distance that

is minimized over the entire route. For the latter, we calculate the sum of distances between each pair
of zones, an origin jo, 1st purchase j1, 2nd purchase j2 if applicable, and a destination jd.40 In contrast,
the model implied distances include only distances between jo, j1, and j2, excluding jd.
For two distances to be identical, two conditions must be satisfied. First, consumers must return to

their origin zone (jo = jd). In our data, we find that 70.5% of consumers return to the same location.
Second, they must make all purchases in a single zone. A total of 62.4% of trips satisfy both of these
conditions. It is worth noting that this number represents a lower bound, as we only asked about travel
with the maximum number of purchases for a given day. Additionally, even if consumers made purchases
in two different zones, if the second location is not on the route back to their home, the model-implied
distance may not be significantly different from the optimal distance.

A.2 Robustness of Shift-Share Design

In this section, we check the credibility of our shift-share design. Our instruments exploit differential
city-wide trends across subsectors, which are documented in Table A.5. We first confirm that our

40 Because we only ask about locations up to the second purchase, we ignore any additional distances that may have resulted
from additional purchases.
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Table A.2: Average Number of Purchases by the First Sector

Sector Food Retail Other

Average number of purchases 2.00 1.77 1.88
(0.02) (0.03) (0.08)

Notes: We report the standard deviation of the average in the parenthesis.

instruments have enough variation in the Figure A.2. Below, we perform a few diagnostic tests that are
suggested by Goldsmith-Pinkham, Sorkin, and Swift (2020).

A.2.1 Correlates of the Instruments

Wefirst examine the correlation between our instruments and the characteristics of each zone, specifically
rents, population density, and average income in 2015. Table A.6 confirms that the instruments do not
exhibit significant explanatory power for these variables across regions.
Although insignificant, the instruments show a positive correlation with income. This correlation

might arise if regions with higher average incomes initially have a higher proportion of subsectors that
become popular in the following years. For instance, this scenario is plausible if wealthier individuals
lead the popularity trend. Our identification strategy may be threatened if income in 2015 is correlated
with regional shocks during the sample period. This could occur if wealthy individuals are more likely
to live in regions that are likely to grow, or if they have a role in driving regional growth. Although we
do not find a significant correlation, such a correlation could potentially introduce an upward bias in
our estimates, and thus we still control for them in our analysis as a precautionary measure.

A.2.2 Pre-trends

In order to investigate whether there are any pre-trends in the change in the number of stores, we cannot
use our main dataset, the Seoul Commercial dataset, as it only covers years from 2014 onwards. Instead,
we turn to the Seoul Business Survey, a publicly available administrative dataset spanning from 2006.
This annual dataset includes information on the number of businesses in various sectors, including
agriculture, manufacturing, and others, in each zone. However, the classification in this dataset is
relatively broad, comprising only 19 sectors for the entire economy. Thus, we narrow our focus to four
sectors that are relevant to consumption services: wholesale and retail trade, accommodation and food
services activities, real estate activities and renting and leasing, and arts, sports and recreation related
services.
Using this dataset, we calculate the pre-trends in the growth rates of the number of stores between

2009 and 2013. Since the classification in this dataset does not match our main analysis, preventing
us from grouping them into the three sectors we use in our main analysis, we instead concentrate
on variation at the zone level rather than at the zone-sector level. We compute the changes in the
number of stores in the four sectors listed above and construct zone-level instruments as follows:

42



Table A.3: Average Number of Purchases across Locations

(1) (2) (3)

logNj 0.043∗∗ 0.037∗∗ 0.043∗∗

(0.018) (0.018) (0.019)
Observations 3475 3475 3475
Sector FE ✓ ✓

Location type FE ✓

Notes: logNj is the total number of stores in a zone j where
a consumer made the first purchase. Sector FE refers to
the sector of the first purchase. Location type FE includes
categories (home, school/workplace, others) of both origin
and destination zones.

∆ logN IVj =
∑

s,d sjsd,0∆ logNSeoul,sd, where the formula remains the same as in our main analysis, but
we aggregate across different sectors.
In the upper panel of Table A.7, we examine the relationship between our instruments, constructed

from the Seoul Commercial dataset, and the pre-trends (trends, respectively) of the number of stores
computed from the Seoul Business Survey. The left two columns show no significant association
between the pre-period regional changes in the number of stores and our instruments. Coefficients are
almost zero and they are not significant. In contrast, the trends during our sample period computed
using the Seoul Business Survey are positively correlated with our instruments, as shown in third and
forth columns. This reassures that instruments can successfully predict the growth of services stores.
However, they are less statistically significant compared to the first stage in Table 1 due to the difference
in data sources.
To further confirm the credibility of our instruments, we repeat the analysis using the instruments

constructed from Seoul Business Survey. We use the same definition of instruments, but we interact
share of the number of business in 2014 instead of revenues shares, and sum over the four different
sectors mentioned earlier. The results, shown in the bottom panel of Table A.7, indicate that these
new instruments are not correlated with the pre-trends, but are positively correlated and statistically
significant when considering the trends.
In conclusion, we find that our results are not influenced by trends in the changes in the number of

stores across regions.

A.3 Spillovers Within-Sector

In addition to cross-sector spillovers, we investigate spillovers within sector which can differ from across-
sector spillovers due to competition forces. For example, we are interested in whether an exogenous
increase in the number of Korean restaurants increases or decreases the number of other food stores.
In this example, demand will substitute toward Korean restaurants, leading to smaller or even negative
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Table A.4: Sector Choices of the First and Second Purchases

1st visit 2nd visit
Food Retail Other

Food 52.5% (52.9%) 42.2% (41.4%) 5.3% (5.7%)
Retail 34.7% (52.9%) 60.7% (41.4%) 4.6% (5.7%)
Other 48.4% (52.9%) 25.8% (41.4%) 25.8% (5.7%)

Notes: We compute an average percentage of visits to each sector in parentheses, which has
to be a probability if choices of sectors are completely i.i.d..

spillovers on net. To quantify this effect, we run the following regression:41

∆ logNjsd = α2 + β2∆ logNjs,−d + X′
jsdγ2 + ujsd

where ∆ logNjsd is the same as before, and ∆ logNjs,−d is the growth rate of the number of stores of
zone j and sector s excluding subsector d, which is defined by

∆ logNjs,−d =
∑
d′ ̸=d

sjsd′∆ logNjsd′ ,

where sjsd′ is the revenue share of subsector d′ in sector s, excluding subsector d for year t = 2015, and
X’jsd is the covariate. This specification has the same endogeneity concerns as before, so we instrument
∆ logNjs,−d with a Bartik instrument

∆ logNBartikjs,−d =
∑
d′ ̸=d

sjsd′,0∆ logNSeoul,sd′

where sjsd′,0 is the revenue share in year t0 = 2014.
Columns (1)–(4) report the results for the within-sector specifications. For all four columns, we

control for sector s fixed effects and the subsector composition of the other two sectors, s′ and s′′. As
in cross-sector specifications, we control for subsector-specific trends. Column (1) is the result of the
ordinary least squares. We find that the number of stores in a given subsector increases when there is
an exogenous increase in the number of stores in other subsectors within the same sector. However,
this result may be biased upward. Moving to Column (2), where we use Bartik instruments to address
endogeneity concerns, we obtain the opposite result. In Columns (3) and (4), we include subsector
fixed effects, district fixed effects, and the same set of controls as in Columns (3) and (4) in Table 1.
Focusing on our main specification in Column (3), the number of stores in a given subsector decreases
by 4.6% when there is a 10% exogenous increase in the number of stores in other subsectors within

41 One might view this as an example of peer effect regression of Manski (1993). However, we can interpret the result as
a causal one for two reasons. First, we use leave-one-out weighted average ∆logNjs,−d and instrument it with shift-share
instruments. Second, we can get similar estimates when we make arbitrary division between subjects and peers (e.g., estimate
the effect of Korean restaurants on Japanese restaurants, not vice versa).

44



Table A.5: City-wide growth rates of subsectors

Subsector d logNsd

Top 3
Japanese restaurants 0.20
Café 0.19
Street foods (Bunsik) 0.19

Bottom 3
Computers −0.13

Clothing −0.15

Bars −0.31

Notes: Data source: Seoul Commercial area data.
We compute the growth rates of the total number
of stores of the top and the bottom 5 subsectors in
Seoul between 2015–2019.

the same sector. Again, in the last column, we use the specification guided by the theory as derived in
Appendix B.3, and it yields similar results.
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Figure A.2. Histogram of logNBartikjs

Table A.6: Correlations with the Instruments

log(rent)j log(pop density)j log(income)j

∆ logNBartikjs 0.309 -1.084 0.274
(0.316) (0.775) (0.172)

Observations 1,122 1,122 1,046

Notes: We always control for sector and district fixed effects. Robust standard errors
are shown in parentheses, with ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table A.7: Pre-Trends: Number of Stores

pre-trend (2009–2013) trend (2015–2019)

Instruments constructed from Seoul Commercial Dataset
∆ logNBartikj -0.084 -0.145 0.192 0.296

(0.230) (0.283) (0.177) (0.208)
District FE ✓ ✓

Instruments constructed from Seoul Business Survey
∆ logNBartikj -0.264 -0.105 0.296∗∗ 0.285∗∗

(0.251) (0.262) (0.123) (0.132)
District FE ✓ ✓

Notes: Data source are Seoul Commercial Dataset and Seoul Business Survey. Robust standard
errors are shown in parentheses, with ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.8: Number of Stores Results: Within-Sector
dependent variable: ∆ logNjsd

(1) (2) (3) (4)
OLS IV IV IV

∆ logNjs,−d 0.188∗∗∗ -0.434∗ -0.456∗ -0.416∗

(0.042) (0.252) (0.257) (0.234)
Sector FE, subsector trend ✓ ✓

Subsector, district FE ✓ ✓

Additional controls ✓ ✓

FIRST STAGE ESTIMATES

∆ logNBartikjs,−d 0.657∗∗∗ 0.672∗∗∗ .
(0.130) (0.140) .

First-stage F stat 25.62 23.06 .
Observations 9380 9379 8827 8827

Notes: Equation estimates based on Seoul Commercial area data for 2014, 2015 and 2019.
More details are explained in the notes of Table 1.
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B. Appendix for Section 3

B.1 Omitted Derivations in Section 3.1

This section provides derivations of the results presented in Section 3.1.

Expenditure Equalization and Recursive Formulation. Taking the first-order condition of the maxi-
mization problem (4) with respect to qt(σt), we have

βt 1

qt(σt)
π(σt) = λβtpjt(σt)s(σt)π(σ

t)

where λ is the Lagrange multiplier associated with the budget constraint (5). This immediately shows
that the optimal expenditure is equalized across all regions and purchases,

et(σ
t) ≡ qt(σ

t) · pjt(σt)s(σt) = λ−1.

This expenditure equalization implies that changing the region for purchase t, jt(σt), does not affect the
budget constraint (5). This means that the consumer always chooses the region j that maximizes the
sum of instantaneous and continuation utilities. Thus, the maximization problem (4) can be recursively
expressed as equation (6). Standard extreme-value algebra simplifies this further to equation (7).

Linear Consumption Index. Combining equations (7) and (8), we have

C(i, e)1/(1−β) =
∏
s

(∑
j

(
exp

(
U(e/pjs)− d̃(i, j)

)1/ν · C(j, e)β/(ν(1−β))
))αsν

= e ·
∏
s

(∑
j

(
p
−1/ν
js · exp(−d̃(i, j))1/ν · C(j, e)β/(ν(1−β))

))αsν

.

Thus, the consumption index is linear in her spending as claimed, and we can define the price index of
services travel from zone i as

Pi ≡
1

C(i, 1)
.

Total Consumer Spending. Note first that if consumers in zone i spend Ei on services travel, their
per-purchase expenditure is given by (1 − β)Ei. In their first purchases, they choose sector s with
probability αs and region j with probability πs

ij . Thus, the spending on (j, s) is∑
i∈J

(1− β)αsπ
s
ijEi ≡ (1− β)αsE

Tπs
j
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whereE = (E1, · · · , EJ)
T and πs

j = (πs
1j , · · · , πs

Jj)
T. Likewise, in their second purchases, the spending

on (j, s) is given by ∑
i∈J

∑
i′∈J

(1− β)βαsEiπii′π
s
i′j ≡ (1− β)βαsE

TΠπs
j

where πii′ =
∑

s αsπ
s
ii′ and Π is a J × J matrix with (i, i′)-element πii′ . In a similar manner, the total

spending on (j, s), which is the sum of the spending from all purchases can be computed as in equation
(10).

Demand Function. Given the aggregate demand on (j, s), Rjs, demand for an individual store ω in
(j, s, d) is given by

qjsd(ω) =

(
pjsd(ω)

pjsd

)−ρ

· ϕjsd ·
(
pjsd
pjs

)−σ

· Rjs

pjs
.

This isoelastic demand function implies constant markups, pjsd(ω) = ρ
ρ−1

cjsd
Ajsd
, where the unit cost cjsd

is given by the solution of the following cost minimization problem

cjsd = min
Hjsd(ω),Ljsd(ω)

rjHjsd(ω) + wjLjsd(ω)

s.t. Hjsd(ω)
γLjsd(ω)

1−γ ≤ 1

=

(
rj
γ

)γ( wj

1− γ

)1−γ

.

B.2 First-Order Approximation (Section 3.2)

In this section, we take the first-order approximations to the equilibrium conditions in Section 3.2, which we
summarize in the following lemma for convenience. For simplicity, we first start with the case without external
economies of scale, assuming that Ajsd and Cjsd are exogenous variables. At the end of the section, we return to
the case with external economies of scale.

Lemma A.1.

N
1− 1−σ

1−ρ

jsd = C−1
jsdÃ

−(1−σ)
jsd c1−σ

jsd p
−(1−σ)
js Rjs (A.1)

pjs =

(∑
d

N
1−σ
1−ρ

jsd Ã
−(1−σ)
jsd

(
ρ

ρ− 1

)1−σ

c1−σ
jsd

)1/(1−σ)

(A.2)

V (i) ≡ exp(Ev(i, 1)) =
∏
s

(∑
j

p
−1/ν
js exp(−τ̃ d(i, j)− φ̃1i̸=j) · V (j)β̃

)αsν

(A.3)

Rjs = (1− β)αsE
T(I − βΠ)−1πs

j

= αs

(
(1− β)

∑
i

Eiπ
s
ij + β

∑
i

∑
k

Eiπikπ
s
kj

)
+ o(β) (A.4)

πs
ij =

p
−1/ν
js exp(−τ̃ d(i, j)− φ̃1i̸=j) · V (j)β̃∑

j′ p
−1/ν
j′s exp(−τ̃ d(i, j′)− φ̃1i ̸=j′) · V (j′)β̃

. (A.5)

where πij =
∑

s αsπ
s
ij , Π = (πij), and πs

j = (πs
1j , · · · , πs

Jj)
T.
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Assumption A.1 (Parameter Restriction). We assume 1 + 1
ν , σ ∈ (1, ρ).

We first log linearize the equilibrium conditions, (A.1)–(A.5). Then, we view these linearized equations as
exact equilibrium conditions and take the first-order approximation up to o(x) where x = (β, (πs

ik)i̸=k,s)
′, i.e.,

we assume that β and πs
ij are small for i ̸= j and ignore second-order terms.42 To simplify notation, we write

log deviations as njsd = d logNjsd, Ĉjsd = d logCjsd, ãjsd = d log Ãjsd, ĉjsd = d log cjsd, p̂js = d log pjs,
rjs = d logRjs, π̂s

ij = d log πs
ij , and ei = d logEi. We also define sector-level variables xjs ≡

∑
d θjsdxjsd for

x ∈ {n, Ĉ, ã, ĉ} where the weight θjsd is the revenue share of d in (j, s) given by

θjsd ≡
N

1−σ
1−ρ

jsd Ã
−(1−σ)
jsd c1−σ

jsd∑
d′ N

1−σ
1−ρ

jsd′ Ã
−(1−σ)
jsd′ c1−σ

jsd′

=
Rjsd

Rjs
.

This choice of weights is consistent with our specifications in Section 2.2. Finally, we define two more
variables ǎjs ≡ ãjs − ĉjs, which captures the combined effect of changes in productivity and input costs, and
ǎ∗js = ǎjs − 1

ρ−1 Ĉjs, which additionally captures the effect of changes in operating costs. Equilibrium in terms of
log deviations is characterized in the following lemma.

Lemma A.2 (Log linearization). When ei = 0 for all i, we have

p̂js = −ǎ∗js − 1
ρ−1rjs

rjs =
∑
i

(1− β)λs
ij π̂

s
ij +

∑
i

∑
k

∑
s′

βλs′s
ikj(π̂

s′

ik + π̂s
kj)

π̂s
ij =

∑
j′

(1j′=j − πs
ij′)

(
− 1

ν p̂j′s − β̃
∑
s′

αs′

∑
j′′

πs′

j′j′′ p̂j′′s′

)
+ o(x)

njsd = ρ−1
ρ−σ

(
−Ĉjsd + (σ − 1)ǎjsd + (σ − 1)p̂js + rjs

)
where λs

ij =
Eiπ

s
ij

(1− β)
∑

i Eiπs
ij + β

∑
iks′ Eiαs′πs′

ikπ
s
kj

and λs′s
ikj =

Eiαs′π
s′

ikπ
s
kj

(1− β)
∑

i Eiπs
ij + β

∑
iks′ Eiαs′πs′

ikπ
s
kj

.

The resulting equilibrium conditions are linear but still not tractable because of general equilibrium feedback
between zones. To proceed, we focus on shocks to a given zone j0 that satisfies the following small open zone
assumption:

Assumption A.2 (Small Open Zone Assumption). Write Ri→js to denote the revenue of (j, s) coming from
consumers who start their services travel from region i:

Ri→js ≡ (1− β)αs

(
0, · · · , 0,

ithª
Ei , 0, · · · , 0

)
(I − βΠ)−1πs

j .

We assume that zone j0 is small in the sense that

πs
jj0 ,

Rj0→js

Rjs
= o(x) for j ̸= j0 and

∑
j ̸=j0

πs
jj0 = O(1).

42 To be precise, we consider a sequence of models indexed by J (e.g., the number of regions), where, as J → ∞, β and πs
ij

converges to zero. We write A = B+ o(xk) hereafter when limJ→∞
AJ−BJ

∥xk
J
∥ = 0 for k ∈ N0 and write A = B+O(xk) when

lim supJ→∞
AJ−BJ

∥xk
J
∥ < ∞.
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Roughly speaking, this assumption requires that the share of zone j0 as both a travel destination and a revenue
source is small enough to ignore any complicated general equilibrium feedback from other zones to zone j0. As a
result, we can solve for the changes in the number of stores in terms of exogenous shocks. Under this assumption,
we can simplify the equilibrium conditions in Lemma A.2.

Proposition A.1. Under Assumption A.2, equilibrium is characterized by (up to o(x))

p̂js, rjs = 0 for j ̸= j0

p̂j0s = −ǎ∗j0s −
1

ρ−1rj0s

rj0s = Ψj0s · q̂j0,s +
∑
s′

Φs′

j0s · q̂j0s′

π̂s
ij =


0 if i, j ̸= j0
−πs

j0j0
q̂j0s if i = j0, j ̸= j0

q̂j0s if i ̸= j0, j = j0
(1− πs

j0j0
)q̂j0s if i = j = j0

where q̂j0s = − 1
ν p̂j0s − β̃

∑
s′ αs′π

s′

j0j0
p̂j0s′ and

Ψj0s =

(
1−

(
(1− β)λs

j0j0 +
∑
is′

βλs′s
ij0j0

)
πs
j0j0

)

Φs′

j0s =

(∑
i

βλs′s
ij0j0(1− πs

j0j0 · 1i=j0)

)
.

For future reference, note that Ψj0s,Φ
s′

j0s
∈ (0, 1) and that Φs′

j0s
= o(1).

The following corollary characterizes the responses of other endogenous variables. When there are favorable
shocks to zone j0, it experiences an increase in the number of stores, an increase in revenue, a decrease in the
price index, and increases in travel inflows. In contrast, the effects on other regions are ambiguous.43

Corollary A.1. When there are favorable shocks in j0 (ãj0s > 0, cj0s < 0, and Ĉj0s < 0 for all s), we have

p̂j0s < 0, rj0s > 0, π̂s
j0j0 > 0, π̂s

ij0 > 0, π̂s
j0j < 0, and nj0s > 0 (A.6)

for i, j ̸= j0.

Proposition A.1 gives us a simultaneous equation system that determines the equilibrium values of endogenous
variables. We can further solve for endogenous variables in terms of exogenous shocks.

Proposition A.2. Under Assumption A.2 and up to o(x), we have

nj0s = γ1
j0sǎ

∗
j0s − Ĉj0s +

∑
s′ ̸=s

τ2s
′

j0s ǎ
∗
j0s′ (A.7)

nj0sd = γ1
j0sǎ

∗
j0s − Ĉj0sd + κ(ǎ∗j0sd − ǎ∗j0s) +

∑
s′ ̸=s

τ2s
′

j0s ǎ
∗
j0s′ (A.8)

43 These effects are o(x), so we need to take second-order approximations to determine their signs. To see why these effects
are ambiguous, consider four regions, A, B, C, andD. Services travel is possible only from B to A; from C to B; and from C
to D. In this case, when there are favorable shocks in region A. The number of stores in B decreases, so consumers in region
C substitute toward regionD. Thus, favorable shocks in region A decrease the number of stores in region B, while increasing
the number of stores in region D.
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where
κ =

(σ − 1)(ρ− 1)

(ρ− σ)
, γ1

j0s = Θj0s
1

1− Θj0s

ρ−1

, and τ2s
′

j0s = Λs′

j0s

1

1− Θj0s

ρ−1

1

1− Θj0s′

ρ−1

.

The shocks {ǎ∗j0sd} and {Ĉj0sd} are the composite effect of preference, technology, input costs, and the operating
cost. Moreover, all coefficients are positive, and τ2s

′

j0s
vanishes as β → 0.

Note that the effect of (j, s,−d) on (j, s, d) is determined by the sign of γ1
j0s

− κ, which is in principle
ambiguous and can be characterized by the following proposition. This shows that a shock to a subsector within
the same sector can have negative spillovers when the competition forces dominate the positive effect.

Corollary A.2. When there are favorable shocks on subsectors d′ ̸= d in a region-sector pair (j0, s), subsector d
experiences a decline in the number of stores (i.e., the competition effect is dominant) if and only if

ν(σ − 1) > (1− λs
j0j0π

s
j0j0). (A.9)

Finally, we return to the case with external economies of scale. Note that the constant markup pricing implies
that Υ1j is always proportional to Υ2j , which in turn gives d logΥ1j = d logΥ2j . Thus, up to the first-order
approximation, we can write

ajsd = ājsd + εa · d logΥ2j

Ĉjsd =
¯̂
Cjsd − εc · d logΥ2j

for some εa, εc ∈ R. We assume positive external economies of scale, assuming εa, εc ≥ 0. The shifters ājsd and
C̄jsd are assumed to be exogenous. The following proposition extends the results of Proposition A.2. In particular,
an exogenous increase in the effective productivity of sector s′ ̸= s has a positive effect on sector s through trip
chaining and external economies of scale.

Proposition A.3. Under Assumption A.2 and up to o(x), we have

nj0s = γ̃1
j0s

¯̌a∗j0s + γ̌1
j0s

¯̂
Cj0s +

∑
s′ ̸=s

τ̃2s
′

j0s
¯̌a∗j0s′ +

∑
s′ ̸=s

τ̌2s
′

j0s
¯̂
Cj0s′ (A.10)

nj0sd = nj0s − (
¯̂
Cj0sd −

¯̂
Cj0s) + κ(¯̌a∗j0sd − ¯̌a∗j0s). (A.11)

where all γ̃’s and τ̃ ’s are positive, with the latter vanishing as (β, εa, εc) → (0, 0, 0).

B.3 Justification of IV Specification

In this section, we interpret the reduced-form estimates in Section 2.2 through the lens of our structural model
and its first-order approximated equilibrium conditions. We again start with the case without external economies
of scale and show how the results extend. We relax the assumption that there are shocks only to region j0 and
assume instead that

njs = γ1
jsǎ

∗
js − Ĉjs +

∑
s′ ̸=s

τ2s
′

js ǎ∗js′

njsd = njs + κ(ǎ∗jsd − ǎ∗js)− (Ĉjsd − Ĉjs),
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or equivalently,

njs = γ1
jsãjs − γ1

jsĉjs −
(
1 +

γ1
js

ρ−1

)
Ĉjs +

∑
s′ ̸=s

τ2s
′

js

(
ãjs′ − 1

ρ−1 Ĉjs′ − ĉjs′
)

njsd = njs + κ(ãjsd − ãjs)− κ
ρ−1 (Ĉjsd − Ĉjs)− κ(ĉjsd − ĉjs)

hold for all zones j ∈ J . We implicitly ignore spatial linkages as in Goldsmith-Pinkham, Sorkin, and Swift (2020)
or Borusyak, Hull, and Jaravel (2020).44 In Section 4, we propose an estimation method that exploits exogenous
variations from shift-share design, while taking into account spatial linkages. We start with a formal definition of
Bartik instruments.

Definition A.1. For some given weights {φjs}j,s with
∑

j φjs = 1, we can define Bartik Instruments as

nBartik
js ≡

∑
d

θjsd,0nsd where nsd =
∑
j

φjsnjsd.

For future reference, we also define quasi-Bartik instruments ñBartik
js ≡

∑
d θjsdnsd, which uses θjsd instead of

θjsd,0.

We first aggregate the changes in the number of stores, njsd, across regions using the weights {φjs}j to
calculate the citywide change in the number of stores for each subsector, nsd.45 We then interact these subsector-
level changes with the subsector composition of (j, s) to obtain nBartikjs .
To show consistency of the IV estimators, we make three sets of assumptions. First, unit costs and operating

costs may depend on regions and sectors, but not on subsectors. As a result, we can use Bartik instruments to
isolate the effect of productivity shocks, ã. Second, we make assumptions for the relevance condition and the
exclusion restriction, similar to those in GSS. Finally, we impose symmetry across regions at the sector level and
symmetry across sectors so as to restrict our attention to a single coefficient instead of region- and sector-specific
coefficients. This final assumption is not strictly necessary but simplify propositions.46 Formally, our assumptions
are as follows.

Assumption A.3.

(i) (Costs) Unit costs and operating costs do not depend on d: Ĉjsd = Ĉjs and ĉjsd = ĉjs for all d.

(ii) (GSS) Assume the following probabilistic structure:

ãjsd = ãsd + ε̃jsd

Ĉjs = Ĉs + ε̂js

where ãsd =
∑

j φjsãjsd. We assume that {ε̃j , ε̂j , θj , θj0} ∼ i.i.d. across j and view ãsd and Ĉs as fixed.

(ii’) (GSS: Exogeneity) Assume θjsd,0 ⊥j

(
ε̃js′ ε̂js′ ε̃js′d′

)T∣∣⃗cj , for all s, s′, d, d′ where c⃗j =
(
ĉj1 ĉj2 ĉj3 1

)T.47

44When there are shocks also to other regions, the combined effect of them can be greater than o(x).
45 A more natural choice of weights is φ′

jsd =
Njsd∑
j′ Nj′sd

because Nsd =
∑

j Njsd implies nsd =
∑

j φ
′
jsdnjsd. If the

weights are subsector-dependent, however, nsd not only captures the aggregate trend of sector d, but it is also contaminated by
regional shocks. To see this, suppose φ′

j1sd1
> φ′

j2sd1
and φ′

j1sd2
< φ′

j2sd2
. Then, if there is a positive regional shock to j1,

this would increase nsd1 relative to nsd2 .
46Without this assumption, propositions in this section should be written in terms of weighted averages across regions and

across sectors, as in Section IV of GSS.
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(ii’’) (Relevance) The 3× 3 matrix whose (s, s′)-element is
∑

d,d′ ãsdãs′d′Ej

[
θ⊥jsdθ

⊥
js′d′,0

]
is invertible.48

(iii) (Homogeneous Effect) Initially all regions are symmetric at the sector level and sectors are symmetric so
that the coefficients γ1

js and τ2s
′

js are no longer j- or s-specific, and we write them as γ and τ , respectively.

Under these assumptions, we first prove two useful representations that relate changes in the number of stores
with quasi-Bartik instruments and error terms that are orthogonal to Bartik instruments.

Lemma A.3. Under Assumption A.3, we can write

njs =
γ
κ ñ

Bartik
js +

∑
s′ ̸=s

τ
κ ñ

Bartik
js′ − γĉjs −

∑
s′ ̸=s

τ ĉjs′ + FEs +εjs

njsd = γ−κ
κ ñBartik

js +
∑
s′ ̸=s

τ
κ ñ

Bartik
js′ − γĉjs −

∑
s′ ̸=s

τ ĉjs′ + FEsd +ε̌jsd.

where nBartik
js′′ ⊥j

(
εjs ε̌jsd

)T |⃗cj , for all s, s′′, d.

Corollary A.3. Under Assumption A.3, we can write

njsd = τ
γnjs′ +

(
γ
κ − 1− τ2

κγ

)
ñBartik
js +

(
τ
κ − τ2

κγ

)
ñBartik
js′′ +

(
τ2

γ − γ
)
ĉjs +

(
τ2

γ − τ
)
ĉjs′′ + FEsd + FEs′ +ὲjsd,s′

(A.12)

njsd = γ−κ
γ njs +

τ
γ ñ

Bartik
js′ + τ

γ ñ
Bartik
js′′ − κĉjs − τκ

γ ĉjs′ − τκ
γ ĉjs′′ + FEsd +ὲjsd (A.13)

where nBartik
js′′ ⊥j

(
ὲjsd,s′ ὲjsd

)T |⃗cj , for all s, d, s′, s′′.

These representations (A.12–A.13) directly yield the following two propositions.

Proposition A.4 (IV–Across Sector). If we regress njsd on (njs′ , ñ
Bartik
js , ñBartik

js′′ ), instrumented by (nBartik
js , nBartik

js′ ,

nBartik
js′′ ), controlling for c⃗j , FEsd, and FEs′ , then the IV coefficient on njs′ converges in probability to τ

γ , which is
strictly positive and vanishes as β → 0.

Proposition A.5 (IV–Within Sector). If we regress njsd on (njs, ñ
Bartik
js′ , ñBartik

js′′ ), instrumented by (nBartik
js , nBartik

js′ ,

nBartik
js′′ ), controlling for c⃗j and FEsd, then the IV coefficient on njs converges in probability to γ−κ

γ , which is
negative if and only if (A.9) holds.

If we have external economies of scale, the probability limits become τ̃
γ̃ and

γ̃−κ
γ̃ . In particular,

τ̃
γ̃ is strictly

positive and vanishes as (β, εc, εa) → (0, 0, 0).

B.4 Efficiency Properties of Trip Chaining and External Economies of Scale (Section 3.3)

B.4.1 Preliminary Results: CES Efficiency

We first prove some preliminary results that will be used to study the efficiency of decentralized equilibrium with
trip chaining and/or external economies of scales. These results extend the CES efficiency result of Dixit and

47 In terms of the framework of GSS, what we need is orthogonality between θ0 and the structural error terms. The proof of
Lemma A.3 reveals that the structural error terms contain ε̃js ≡ ∑

d θjsdε̃jsd, ε̂js, and ε̃jsd. The key difference from GSS is
that the observables (njsd) we use to construct Bartik instruments are endogenous in this paper.

48 For a variable xj that has a region index j, we define the residualized version x⊥
j as the j-th residual from the regression

of xj on c⃗j . Using this notation, we can rewrite the exogeneity assumption as θ⊥jsd,0 ⊥j

(
ε̃⊥js′ ε̂⊥js′ ε̃⊥js′d′

)T.
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Stiglitz (1977) by allowing nested aggregation, heterogeneous consumers, and external economies of scale. We
first consider nested utility functions and show that the decentralized equilibrium is efficient when the lowest nest
features constant elasticity of substitution. We then consider heterogeneous agents and external economies of
scale and provide the condition on the social welfare function and on the elasticity of external economies of scale
under which the decentralized equilibrium attains the social optimum.

Homogeneous Agent. Consider a set of nests, each of which is indexed by j ∈ J . Utility is given by arbitrary
aggregation, U = U({qj}j). For example, in our application j indexes regions, sectors, and subsectors. Within
each nest, we assume that quantities are aggregated by

qj =

∫ Nj

0

fj(qj(ω)) dω (e.g., CES: fj(q) = q1−1/ρj ).

The cost of producing one unit of goods in nest j is given by cj , and the cost of increasing the number of variety
for nest j is Ej . In the decentralized equilibrium, consumers solve the utility maximization problem,

max
{qj(ω)}j,ω

U = U({qj}j,)

s.t.
∑
j

∫ Nj

0

qj(ω)pj(ω) dω ≤ w

where pj(ω) is the price and w is income. The first-order condition is given by

∂U

∂qj
· f ′

j(qj(ω)) = λpj(ω) (A.14)

where λ is the Lagrange multiplier associated with the budget constraint. Thus, monopolistically competitive
firms solve the profit maximization problem,

max
qj(ω)

{
1

λ

∂U

∂qj
f ′
j(qj(ω))qj(ω)− cjqj(ω)

}
.

Note that the structure of the economy is characterized by a mapping from {qj(ω)}ω∈[0,Nj ] to qj and another
mapping from {qj}j to U . When there is only one nest and the latter is an identity map, it is well known (e.g.,
Dixit and Stiglitz, 1977) that the decentralized allocation is constrained efficient when the former features constant
elasticity of substitution. We further show in the following proposition that this result holds for any mapping from
{qj}j to U . We postpone a proof of this result to the end of this section, where we prove a more general result
with heterogeneous agents and external economies of scale.

Proposition A.6. When fj(·) is CES with elasticity of substitution not being dependent on j, the decentralized
equilibrium coincides with the solution of the centralized welfare maximization.49

Heterogeneous Agent. There are I different agents types indexed by i ∈ I. For example, in our application
consumers are different in terms of their income and the regions they start their services travel. In the decentralized

49 Elasticity of substitution should not be j-specific. See the proof of Lemma A.6.
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equilibrium, an agent of type i solves

max
{qij(ω)}j,ω

U i = U i({qij}j) where qij =

∫ Nj

0

fj(q
i
j(ω)) dω (A.15)

s.t.
∑
j

∫ Nj

0

pj(ω)q
i
j(ω) dω ≤ wi

The first-order condition is given by
∂U i

∂qij
· f ′

j(q
i
j(ω)) = λi · pj(ω), (A.16)

where λi is the Lagrange multiplier associated with the budget constraint of agents with type i. This condition
characterizes the demand qij(ω) = qij(pj(ω)). Thus, monopolistically competitive firms solve

max
pj(ω)

{
(pj(ω)− cj)

∑
i

qij(pj(ω))

}
. (A.17)

In this economy, the following proposition extends the result of Proposition A.6, characterizing the conditions
on the social welfare function under which decentralized allocation solves the social planner problem. Again, we
postpone a proof to the end of this section.

Proposition A.7. When (i) fj(·) is CES with elasticity of substitution ρ not being dependent on j, and (ii) the
mapping {qij(ω)}j,ω 7→ U i is homogeneous of degree s for some s > 0, the decentralized allocation solves the
following social planner problem:

max
{Nj}j ,{qij(ω)}j,ω,i

∑
i

wi · logU i (wi acts as a Pareto weight) (SP)

s.t.
∑
i

∑
j

∫ Nj

0

cjq
i
j(ω) dω +

∑
j

EjNj ≤
∑
i

wi,

hence, it is Pareto efficient with Pareto weights independent of the structure of the economy.

External Economies of Scale. Again, there are I different agents types, where an agent of type i solves the utility
maximization problem (A.15), and firms solve the profit maximization problem (A.17). Suppose that the set of
nests J is partitioned into J =

⊎
ι Jι, and J : J → {Jι} assigns each element of J to the partition that contains

it. The only difference is that now the unit cost and entry cost are endogenously determined by

cj = cj(Υ1J(j),Υ2J(j)) and Ej = Ej(Υ1J(j),Υ2J(j))

where
Υ1J(j) =

∑
j′∈J(j)

∑
i

∫ Nj′

0

cj′q
i
j′(ω) dω and Υ2J(j) =

∑
j′∈J(j)

Ej′Nj′

are the total resource spent on production and variety creation for partition J(j), respectively.50

50 In general, Υ1J(j) and Υ2J(j) might not be well-defined because they depend on cj and Ej , which are functions of Υ1J(j)

and Υ2J(j). We implicitly restrict cj(·) and Ej(·) so that Υ1J(j) and Υ2J(j) are well-defined. Note that under the conditions
of Lemma A.4 or A.5, Υ1J(j) and Υ2J(j) are indeed well-defined. For example, we assume cj = c̄j ·Υεc

1J(j) in Lemma A.4.

This gives Υ1J(j) =
∑

j′∈J(j) cj′qj′ =
(∑

j′∈J(j) c̄j′qj′
)
Υεc

1J(j) =
(∑

j′∈J(j) c̄j′qj′
)1/(1−εc)

.
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As an intermediate step, we follow Dhingra and Morrow (2019) and first characterize the conditions under
which the decentralized allocation solves the centralized revenue maximization problem:

max
{Nj}j ,{qij(ω)}j,ω,i

∑
j,i

∫ Nj

0

1

λi

∂U i

∂qij

∣∣∣∣
de
· f ′

j(q
i
j(ω))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
from (A.16)

· qij(ω) dω (CRM)

s.t.
∑
j,i

∫ Nj

0

cj(Υ1J(j),Υ2J(j))q
i
j(ω) dω +

∑
j

Ej(Υ1J(j),Υ2J(j))Nj ≤
∑
i

wi

where the value of 1

λi

∂U i

∂qij
is evaluated at the decentralized allocation so that the term 1

λi

∂U i

∂qij

∣∣∣∣
de

· f ′
j(q

i
j(ω))

captures the residual demand firm j faces in the decentralized equilibrium, and we take this value as given when
solving problem (CRM). Lemmas A.4 and A.5 summarize the results. The proofs are given in Appendix F.

Lemma A.4 (External Economies of Scale I). Assume that (i) cj and Ej feature isoelastic external economies of
scale:

∂ ln cj
∂ lnΥℓJ(j)

= εcℓ and
∂ lnEj

∂ lnΥℓJ(j)
= εEℓ

for ℓ = 1, 2 and that (ii) fj(·) is CES with elasticity of substitution ρj possibly being different across j. A
sufficient condition for the decentralized equilibrium to solve the centralized revenue maximization problem is
εc1 = εE2 and εc2 = εE1 = 0. Unless ρj is the same across all j, this is also a necessary condition.51

Lemma A.5 (External Economies of Scale II). Assume that (i) cj and Ej are functions of ΥJ(j) = Υ1J(j)+Υ2J(j),
and they feature isoelastic external economies of scale:

∂ ln cj
∂ lnΥJ(j)

= εc and
∂ lnEj

∂ lnΥJ(j)
= εE

and that (ii) fj(·) is CES with elasticity of substitution ρj possibly being different across j. A sufficient condition
for the decentralized equilibrium to solve the centralized revenue maximization problem is εc = εE . Unless ρj is
the same across all j, this is also a necessary condition.52,53

Finally, we characterize additional conditions needed to show that the solution of the centralized revenue
maximization problem and that of the social planner problem coincide.

Lemma A.6 (CRM → SP). When (i) fj(·) is CES with elasticity of substitution ρ not being dependent on j, and
(ii) the mapping {qij(ω)}j,ω 7→ U i is homogeneous of degree s for some s > 0, the solution of (CRM) coincides

51 If ρj is the same across all j, we only need εc1 + 1
ρ−1

εE1 = (ρ− 1)εc2 + εE2.
52 If ρj is the same across all j, we do not need any condition on εc and εE .
53 Even when there is no external economies of scale, the decentralized allocation does not solve (CRM) in genereal. The

necessary and sufficient condition for it to solve (CRM) for arbitrary {wi}i is that fj is CES with elasticity of substitution
possibly being different across j. In contrast to Dhingra and Morrow (2019), we need CES assumption to prove that the
decentralized allocation solves the (CRM). To understand this, suppose that firms can price discriminate agents with different
types (i.e., type-specific price pij(ω) instead of pj(ω)). We can show that the decentralized allocation with price discrimination
always solves (CRM). Thus, the decentralized allocation without price discrimination solves (CRM) if and only if we have
pij(ω) = pi

′
j (ω) for all i ̸= i′ under the decentralized equilibrium with price discrimination This requires markups to be

uniform across i. Since consumers with different types will generically consume different quantities, uniform markup in turn
requires fj to be constant elasticity of substitution (CES).
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with the solution of the following social planner problem:

max
{Nj}j ,{qij(ω)}j,ω,i

∑
i

wi · logU i (wi acts as a Pareto weight) (SP-EES)

s.t.
∑
j,i

∫ Nj

0

cj(Υ1J(j),Υ2J(j))q
i
j(ω) dω +

∑
j

Ej(Υ1J(j),Υ2J(j))Nj ≤
∑
i

wi.

Lemmas A.4–A.6 immediately prove Proposition A.8, which characterizes conditions under which the decen-
tralized allocation is efficient. Propositions A.6 and A.7 are special cases of Proposition A.8 with homogeneous
agent, I = 1, and without external economies of scale.

Proposition A.8. When (i) cj and Ej satisfy the conditions of either Lemma A.4 or A.5, (ii) fj(·) is CES with
elasticity of substitution ρ not being dependent on j, and (iii) the mapping {qij(ω)}j,ω 7→ U i is homogeneous of
degree s for some s > 0, the decentralized allocation solves the social planner problem (SP-EES).

B.4.2 Preliminary Results: Two-Step Maximization

In this section, we prove that a certain class of utility maximization problems can be solved in two steps. This
includes both the decentralized utility maximization problem and social planner problem with trip-chaining and
external economies of scale. We will use this result to show that the possibility of trip chaining only affects the
mapping from underlying quantities to utility, not affecting the efficiency property of the decentralized equilibrium.
Consider a utility maximization problem subject to a resource constraint:

max
{xj(ω;σ)}j,ω,σ

Ũ({xj(σ)}j,σ) where xj(σ) = F ({xj(ω;σ)}ω) (A.18)

s.t.
∑
j

∑
σ

π(σ)
∑
ω

cj(ω; Υ1J(j)) · xj(ω;σ) ≤ I

where j again indexes different nests, σ indexes separate purchases from a given nest, and ω indexes different
variety in nest j. For example, in our application j indexes regions, sectors, and subsectors, σ indexes individual
purchases of services goods, and ω indexes individual stores. π(σ) is the weight, and the aggregation F (·) is
constant return to scale.
To encompass the case with external economies of scale, we allow the cost cj(·) to negatively depend on the

resource spent on production for partition J(j),

Υ1J(j) =
∑

j′∈J(j)

∑
σ

π(σ)
∑
ω

cj′(w; Υ1J(j))xj′(ω;σ).

The key idea of two-step maximization is that when the minimized cost of producing {xj(σ)}j,σ only depends
on the values of {xj}j where xj =

∑
σ π(σ)xj(σ), we can solve the utility maximization problem by first

maximizing the utility for given values of {xj}j , and then maximizing it over possible values of {xj}j . The
following lemma formalizes this idea. The proof is given in Appendix F.

Lemma A.7 (Two-step Maximization). We can solve problem (A.18) in two steps. First, we solve the problem for
given values of {xj}j:

U({xj}j) = max
{xj(σ)}j,σ

Ũ({xj(σ)}j,σ)

s.t.
∑
σ

π(σ)xj(σ) ≤ xj , ∀j.
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Second, we choose {xj}j that maximize U subject to the resource constraint:

max
{xj}j

U({xj}j)

s.t.
∑
j

c({cj(ω; Υ1J(j))}ω) · xj ≤ I.

We can easily see that this is equivalent to

max
{xj(ω)}j,ω

U({xj}j) where xj = F ({xj(ω)}ω)

s.t.
∑
j

∑
ω

cj(ω; Υ1J(j)) · xj(ω) ≤ I.

Trip Chaining. To apply Propositions A.6–A.8 to our model, we need to reformulate the decentralized utility
maximization problemand social planner problem to two-stepmaximization problems. Recall that the consumption
utility UC

iriw(o; Iiw(o)) for a worker o who live in zone ir and work in zone iw with income Iiw(o) is given by
(3). For expositional simplicity, we assume throughout this section that consumers start their services travel only
from their resident zone, that they only consume tradable goods and services, and that consumers who live in the
same zone have the same income. But the results in this section hold without these assumptions. Under these
assumptions, (3) is simplified to

UC
i = max

C̃i,Cr
i

(
C̃i

1− µ

)1−µ(
Cr

i

µ

)µ

(A.19)

s.t. C̃i + PiC
r
i ≤ Ii

where µ = µr
c . The subscript i denotes the resident zone. C̃i and Cr

i denote the consumption indices for tradable
goods and services travel. Ii is income of workers who live in region i. In the decentralized equilibrium, these
workers solve the utility maximization problem

max{jit(σ
t)},{qi(σt)},{qid(σ

t)},{qid(ω;σt)},C̃i
UC
i (DE)

where Cr
i = exp((1− β)Vi)

Vi =

∞∑
t=0

βt
∑
σt

(
U
(
qi(σt)

)
− τd(jt−1(σ

t−1), jit(σ
t))− φ1jt−1(σt−1 )̸=ijit(σ

t) + νε
jit(σ

t)
t

)
π(σt)

qi(σt) =

(∑
d

ϕ
1/σ

jit(σ
t)s(σt)d

qid(σ
t)1−1/σ

) σ
σ−1

qid(σ
t) =

(∫ N
jit(σ

t)s(σt)d

0

qid(ω;σ
t)1−1/ρ dω

) ρ
ρ−1

s.t.

∞∑
t=0

βt
∑
σt

(∑
d

∫ N
jit(σ

t)s(σt)d

0

pjit(σt)s(σt)d(ω) · qid(ω;σt) dω

)
π(σt) + C̃i ≤ Ii.

Consider a constrained social planner problem that maximizes the utility of the representative consumer by
choosing resource allocation within services market. The social planner is constrained in the sense that she cannot
change the resource allocation between tradable goods consumption and services market. Thus, the resource
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allocated to tradable goods is given by the amount chosen in the decentralized equilibrium, (1− µ)
∑

i IiLi.

max{Njsd},{jit(σ
t)},{qi(σt)},{qid(σ

t)},{qid(ω;σt)},{C̃i}

∑
i

θi logUC
i Li (SP)

where Cr
i = exp((1− β)Vi)

Vi =

∞∑
t=0

βt
∑
σt

(
U
(
qi(σt)

)
− τd(jit−1(σ

t−1), jit(σ
t))− φ1jit−1(σ

t−1) ̸=jit(σ
t) + νε

jt(σ
t)

t

)
π(σt)

qi(σt) =

(∑
d

ϕ
1/σ

jit(σ
t)s(σt)d

qid(σ
t)1−1/σ

) σ
σ−1

qid(σ
t) =

(∫ N
jit(σ

t)s(σt)d

0

qid(ω;σ
t)1−1/ρ dω

) ρ
ρ−1

s.t.
∑
i

( ∞∑
t=0

βt
∑
σt

∑
d

∫ N
jit(σ

t)s(σt)d

0

cjit(σt)s(σt)d

Ajit(σ
t)s(σt)d

· qid(ω;σt) dωπ(σt)

)
Li+

∑
j,s,d

NjsdCjsd +
∑
i

C̃iLi ≤
∑
i

IiLi∑
i

C̃iLi = (1− µ)
∑
i

IiLi

The unconstrained social planner solves the same problem without the last constraint.
We can apply the result of Appendix B.4.2 to reformulate (DE) and (SP) to two-step maximization prob-

lems:54 First, we compute the maximized utility from non-tradable services for given values of {qijsd}, and the
maximized value is denoted by Ci({qijsd}):

Ci({qijsd}) = max
{jit(σ

t)},{qi(σt)},{qid(σ
t)}

Cr
i = exp((1− β)Vi)

where Vi =

∞∑
t=0

βt
∑
σt

(
U
(
qi(σt)

)
− τd(jit−1(σ

t−1), jit(σ
t))− φ1jit−1(σ

t−1 )̸=jit(σ
t) + νε

jit(σ
t)

t

)
π(σt)

qi(σt) =

(∑
d

ϕ
1/σ

jit(σ
t)s(σt)d

qid(σ
t)1−1/σ

) σ
σ−1

s.t.

∞∑
t=0

βt
∑
σt

1jit(σt)=j,s(σt)=s · qid(σt)π(σt) ≤ qijsd, ∀j, s, d.

Think of problem (DE) as maximizing the objective function for a given value of C̃i and then maximizing over
possible values of it. Applying the result of Appendix B.4.2, an equivalent formulation of (DE) is

max
{qijsd},{q

i
jsd(ω)},C̃i

log C̃1−µ
i · (Ci({qijsd})µ (DE’)

where qijsd =

(∫ Njsd

0

qijsd(ω)
1−1/ρ dω

) ρ
ρ−1

s.t.
∑
j,s,d

∫ Njsd

0

pjsd(ω)q
i
jsd(ω) dω + C̃i ≤ Ii.

Similarly, think of problem (SP) as maximizing the objective function for given values of {C̃i} and {Njsd} and
then maximizing over possible values of them. We then have an equivalent formulation of (SP),

54 The index σ in Appendix B.4.2 corresponds to σt here, ω to ω, j to (j, s, d), and π(σ) to βt · π(σt).
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max{Njsd},{qijsd},{q
i
jsd(ω)},{C̃i}

∑
i

θi logU
C
i Li (SP’)

where UC
i = C̃1−µ

i (Ci({qijsd})µ

qijsd =

(∫ Njsd

0

qijsd(ω)
1−1/ρ dω

) ρ
ρ−1

s.t.
∑
i

(∑
j,s,d

∫ Njsd

0

c̃jsd(Υ1j ,Υ2j)q
i
jsd(ω) dω

)
Li +

∑
j,s,d

NjsdCjsd(Υ1j ,Υ2j) +
∑
i

C̃iLi ≤
∑
i

IiLi∑
i

C̃iLi = (1− µ)
∑
i

IiLi

where c̃jsd(Υ1j ,Υ2j) =
cjsd(Υ1j ,Υ2j)

Ajsd(Υ1j ,Υ2j)
.

B.4.3 Application: Efficiency Properties of Trip Chaining

In this section, we apply Propositions A.6 and A.7 to demonstrate that trip chaining does not give rise to any
inefficiencies. First, we show that if all consumers are identical, the decentralized resource allocation within
services market—across regions and between production and variety creation—is efficient. Second, we consider
a general case where consumers differ in terms of their income levels and the origins of their services travel.
We demonstrate that even in this case, trip chaining does not introduce any inefficiencies. Finally, we show that
while an unconstrained social planner would reallocate resources from tradable goods to nontradable services,
this inefficiency does not interact with the presence of trip chaining.

Homogeneous Consumer, Constrained Social Planner. We assume for the moment that consumers are homo-
geneous and reside in i, with an income of Ii. In this economy, there are two potential inefficiencies in the
resource allocation within services market. First, resources can be allocated inefficiently across consumption
regions. Second, within a consumption region, resources can be inefficiently allocated between production and
store creation. This is the quantity-diversity trade-off discussed by Dixit and Stiglitz (1977). The following
proposition shows that these inefficiencies do not arise in the decentralized equilibrium, regardless of the presence
of trip chaining.

Proposition A.9. In the economy with homogeneous consumers, the decentralized allocation solves the constrained
social planner problem (SP).

This is a direct application of Proposition A.6 to (DE’) and (SP’), where the index j in the proposition
corresponds to each region-sector-subsector (j, s, d).

Heterogeneous Consumer, Constrained Social Planner. Let us now assume that different consumers start their
services travel from different regions, indexed by i, and have different incomes denoted as Ii.
We refer to the social planner problem with Pareto weights θi = Ii for all i as the benchmark social planner

problem, as the decentralized allocation is shown to solve it when trip chaining is not allowed (β = 0). By
considering this benchmark social planner problem, we can concentrate solely on the potential inefficiency arising
from the trip-chaining mechanism. The following proposition reveals that trip chaining, in fact, does not generate
inefficiency.
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Proposition 2–Part 1. When trip chaining is not allowed (β = 0), the decentralized equilibrium solves the
constrained social planner problem with Pareto weights θi = Ii, for all i. Furthermore, even when trip chaining
is allowed (β > 0), the decentralized equilibrium solves the constrained social planner problem with the same
Pareto weights.

To prove this result, we can once again apply Proposition A.7 to (DE’) and (SP’), with the index j in the
proposition corresponding to each region-sector-subsector (j, s, d). Notably, the presence of trip chaining does
not alter the homogeneous function condition.

Unconstrained Social Planner. Now suppose that the social planner has the flexibility to reallocate resources
between tradable goods consumption and the services market. In this case, the social planner solves problem (SP’),
but under a single resource constraint that applies to both tradable goods consumption and the services market. To
understand how we can implement the socially optimal allocation, we introduce three types of taxes: subsidies for
non-tradable services {sjsd(ω)}, a tax on tradable goods ttradable, and entry subsidies {Sjsd}. These taxes create
wedges between the prices faced by consumers {pjsd(ω)} and those faced by firms {p̄jsd(ω)}, between the price
of tradable goods faced by consumers ptradable and its competitive price, which is normalized to 1, and between
the entry cost faced by firms C̄jsd and the resource cost of entry Cjsd,

pjsd(ω) = (1− sjsd(ω))p̄jsd(w)

ptradable = 1 + ttradable

C̄jsd = (1− Sjsd)Cjsd.

Net revenues are rebated back to consumers through a lump-sum transfer Ti. Under these taxes, the decentralized
utility maximization problem can be expressed as follows:

max
{qijsd},{q

i
jsd(ω)},C̃i

log C̃1−µ
i · (Ci({qijsd})µ (DE’)

where qijsd =

(∫ Njsd

0

qijsd(ω)
1−1/ρ dω

) ρ
ρ−1

s.t.
∑
j,s,d

∫ Njsd

0

pjsd(ω)q
i
jsd(ω) dω + ptradableC̃i ≤ Ii + Ti

and the free-entry condition is given by:

C̄jsd =
∑
i

(p̄jsd(ω)− c̃jsd)q
i
jsd(ω)Li.

The next proposition shows that the unconstrained social planner would reallocate resources from tradable
goods consumption to non-tradable services consumption, achieved through taxing the former and subsidizing
the latter. In particular, the social planner increases the number of non-tradable services stores proportionally
more than the decentralized number of stores. Importantly, this proportionality remains unchanged regardless
of the presence of trip chaining. A formal proof of this result is deferred to the next section, where we prove a
general result with external economies of scale.

Proposition 2–Part 2. The unconstrained social planner chooses the number of non-tradable services stores
{N∗

jsd} given by
N∗

jsd = χ ·NLF
jsd,
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where NLF
jsd represents the number of stores in the laissez-faire equilibrium and χ = ρ

ρ−(1−µ) > 1 is a constant
that remains unaffected by the presence of trip chaining. This optimal allocation can be implemented through a
combination of a tax on tradable goods and a subsidy for non-tradable services: ttradable = µ

ρ−1 , sjsd(ω) = 1−µ
ρ ,

Sjsd = 0, and Ti = 0.

B.4.4 Application: Efficiency Properties of External Economies of Scale

Constrained-Efficient Specification. In this section, we first apply Proposition A.8 to characterize the conditions
on the form of external economies of scales under which the decentralized equilibrium achieves constrained
efficiency. Subsequently, we show that the economy is generically constrained inefficient and that the presence
of external economies of scale exacerbates the inefficient allocation of resources between tradable goods and
non-tradable services. We can apply Proposition A.8 to show the following result.

Proposition 3–Part 1. Assume isoelastic external economies of scale of the form either

c̃jsd = c̄jsd ·Υ−ε
1j and Cjsd = C̄jsd ·Υ−ε

2j

or
c̃jsd = c̄jsd ·Υ−ε

j and Cjsd = C̄jsd ·Υ−ε
j

where Υ1j =
∑

s,d c̃jsd

(∑
i

∫ Njsd

0
qijsd(ω) dω

)
and Υ2j =

∑
s,d CjsdNjsd represent the total resources expended

on production and variety creation for region j, respectively, and Υj = Υ1j +Υ2j . Under these conditions, the
decentralized equilibrium solves the social planner problem.

General Constrained Inefficiency. To illustrate the generic inefficiency associated with non-tradable services
market with external economies of scale, we consider a general case with

c̃jsd = cjsd(Υ1j ,Υ2j) and Cjsd = Cjsd(Υ1j ,Υ2j)

with possibly varying elasticities,

εcℓj =
∂ ln c̃jsd
∂ lnΥℓj

and εEℓj =
∂ lnCjsd

∂ lnΥℓj
.

The following proposition underscores that, in the presence of external economies of scale, the non-tradable
services market is generically constrained inefficient.

Proposition A.10 (Constrained Inefficiency). The constrained-efficient allocation can be implemented through a
combination of nontradable services subsidies:

Sjsd =
ρ(E2j − E1j)

1− E1j + (ρ− 1)(E2j − E1j)
and sjsd(ω) = E1j .

where

1− E1j =
1− εE2j +

1
ρ−1εE1j

(1− εc1j)(1− εE2j)− εc2jεE1j
and 1− E2j =

1− ρ−1
ρ εE2j +

1
ρεE1j +

ρ−1
ρ εc2j − 1

ρεc1j

(1− εc1j)(1− εE2j)− εc2jεE1j
.
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This proposition clearly demonstrates the inefficiency of the decentralized equilibrium in terms of both
interregional and intraregional allocation. For instance, if E1j and E2j tend to increase with Υ1j and Υ2j , the
social planner would subsidize concentrated regions with higher values of Υ1j and Υ2j . If E2j tend to be higher
than E1j , it is optimal to reallocate resources from production to variety creation.

Unconstrained Inefficiency. To simplify the exposition, we consider isoelastic external economies of scale as
assumed in Appendix B.4.4. We can prove the following result, where Proposition 2–Part 2 is a special case with
ε = 0.

Proposition A.11 (Unconstrained Social Planner). Assume isoelastic external economies of scale of the form
either

c̃jsd = c̄jsd ·Υ−ε
1j and Cjsd = C̄jsd ·Υ−ε

2j

or
c̃jsd = c̄jsd ·Υ−ε

j and Cjsd = C̄jsd ·Υ−ε
j .

The unconstrained social planner chooses the number of non-tradable services stores {N∗
jsd} given by

N∗
jsd = χ(ε) ·NLF

jsd,

where NLF
jsd represents the number of stores in the laissez-faire equilibrium. The constant χ(ε) = ρ̃(ε)

ρ̃(ε)−(1−µ) > 1,
where ρ̃(ε) = ρ(1+ε)

1+ρε , remains unaffected by the presence of trip chaining, but positively depends on ε. The optimal
allocation can be implemented through a combination of a tax on tradable goods and a subsidy for non-tradable
services: ttradable = µ

ρ̃(ε)−1 , sjsd(ω) = 1−µ
ρ̃(ε) , Sjsd = 0, and Ti = 0.

B.5 A General Equilibrium Model

We close the model by specifying the remaining parts of the city structure. In particular, we endogenize
the spatial distribution of consumers, wages, and rent prices that we take as given in equilibrium of
the services market. We mainly follow Ahlfeldt et al. (2015) and Tsivanidis (2019) with a few key
modifications. Each location differs in terms of their productivity, amenities, wages, and land supply.
We first consider workers’ location choice problems. Then, we describe how decisions of firms—both
tradable or non-tradable—and market clearing conditions determine wages and rent prices.
In this section, our spatial unit is a district, which is a larger unit than a zone. In particular, each

worker chooses districts to live and work, and the labor and land markets clear at the district level. This
is mainly due to data limitations: for a few variables including average wages by residential region,
we only have data at the district level. We continue to assume that the spatial unit of the services
market is a zone. The main focus of this paper is the services distribution and its efficiency and welfare
consequences. Thus, as long as counterfactual exercises affect zones within a district similarly in terms
of general equilibrium outcomes, our assumption is not overly restrictive.

Workers’ Location Choice. A city is populated with a fixed measure of workersM . Workers, indexed
by o, choose where to live dr and where to work dw.55 Once workers determine a pair of districts (dr, dw),

55We use d to index districts to avoid confusion with i and j, which are indices for zones.
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they are randomly allocated to a residential zone ir ∈ dr and a business zone iw ∈ dw, according to
probability Pr(ir, iw|dr, dw). For simplicity, we assume that a residential zone and a business zone are
independently determined, i.e., Pr(ir, iw|dr, dw) = Prr(ir|dr) Prw(iw|dw). The value of worker o is
given by

U(o) = max
dr,dw

E[Bdr · zdr(o) · Uiriw(o)|dr, dw]

where Bdr is a regional residential amenity, and zdr(o) is an idiosyncratic residential amenity. The term
Uiriw(o) summarizes the utility associated with to the workplace and consumption decisions.

Uiriw(o) =
ξdw

d̃iriw
UC
iriw(o; Iiw(o))

where ξdw is a workplace amenity, and UC
iriw(·) is the consumption utility defined in (3). Finally, d̃iriw is

the commuting disutility, given by

d̃iriw = exp
(
κdd(ir)d(iw) + φκ1d(ir )̸=d(iw)

)
where d(i) denotes a district to which zone i belongs.56 The distance between two districts dr and dr

is defined as a weighted average of the distance between zones in two districts, ddr,dw =
∑

ir,iw dir,iw ·
P (ir, iw|dr, dw). Note that the parameter κ can be different from its counterpart τ , which governs the
disutility of services travel. We also include a border effect φκ as before.
We assume that labor income is the only source of income, and factor payments to capital or land

go to absentee owners. Thus, income Iiw(o) in the budget constraint in (3) is given by

Iiw(o) = wd(iw) · vd(iw)(o)

where wdw is the workplace-specific wage, and vdw(o) is the idiosyncratic component of the wage.
Finally, we assume that the idiosyncratic components zdr(o) and vdw(o) follow Fréchet distributions:

Fz(z) = exp(−z−εz) and Fv(v) = exp(−v−εv)

where εz, εv > 1 are the shape parameters. Higher values imply that idiosyncratic components have less
importance in decisions.57

For simplicity, we follow Tsivanidis (2019) to assume that workers first choose residential districts,
and then choose business districts.58 This allows a simple equilibrium characterization using backward
induction. We can summarize the timeline as follows. First, a worker o observes realizations of
{zdr(o)}dr . Second, she chooses her residential district dr that gives her the highest expected utility.
Third, she observes realizations of {vdw(o)}dw . Fourth, she optimally chooses business district dw.

56 Alternatively, we can assume that the commuting disutility is defined between zones: d̃iriw = exp(κdiriw + φκ1ir ̸=iw ).
This specification, however, does not allow us to use a gravity equation to estimate (κ, φκ).

57 It is well known in the literature that it is without loss to assume unit scale parameters because they can be isomorphically
captured by the terms Bdr and ξdw .

58 In Ahlfeldt et al. (2015), they assume that workers draw idiosyncratic component of utility for all pairs (ir, iw) from the
independent Fréchet distribution, but this approach is computationally burdensome.

65



Fifth, she is randomly allocated to (ir, id). Finally, she makes consumption decisions for tradable goods,
non-tradable services, and residential floor space.
Let us start with the business area decision of workers who chose to live in dr. From (3), the utility

when working in dw is given by

Udrdw(o) =
∑
iriw

Pr(ir, iw|dr, dw)P−µr
c

ir P
−µw

c
iw · (ptradable)−µC̃ · r−µℓ

dr · ξdw · wdw · vdw(o)
exp(κddrdw + φκ1dr ̸=dw)

. (A.20)

Workplace dw affects not only the wage but also the price index for services travel starting from the
workplace. This together with the Fréchet assumption gives the probability of workers, who live in dr,
choosing to work in dw:

Pr(dw|dr) =
(
P̄

−µw
c

dw ξdwwdw exp(−κddrdw − φκ1dr ̸=dw)
)εv∑

d

(
P̄

−µw
c

d ξdwd exp(−κddrd − φκ1dr ̸=d)
)εv

where P̄−µw
c

dw =
∑

iw∈dw Prw(iw|dw)P−µw
c

i is the expected price index of services travel that starts from
the workplace. We now turn to the residential district choice. The expected indirect utility from choosing
a residential district dr has a simple expression,

Udr(o) = E
[
max
dw

{Udrdw(o)}
∣∣∣dr]

= Bdr · zdr(o) · P̄
−µr

c
dr (ptradable)−µC̃r−µℓ

dr ·

(∑
d

(
P̄

−µw
c

d ξdwd exp(−κddrd + φκ1dr ̸=d)
)εv)1/εv

≡ Udr · zdr(o)

where expectation is taken over {vdw(o)}dw , and P̄−µr
c

dr =
∑

ir∈dr Pr
r(ir|dr)P−µr

c
ir is the expected price

index, defined analogously to P−µw
c

dw . From the Fréchet assumption, workers choose a district dr with
probability

Pr(dr) =
(Udr)

εz∑
d

(Ud)
εz
.

In sum, the probability of workers choosing a residential district dr and a business district dw is given by

Pr(dr, dw) =
(Udr)

εz∑
d(Ud)εz

·
(
P̄

−µw
c

dw ξdwwdw exp(−κddrdw − φκ1dr ̸=dw)
)εv∑

d

(
P̄

−µw
c

d ξdwd exp(−κddrd − φκ1dr ̸=d)
)εv .

From the discussion so far, the spatial distribution of workers is determined by

Miriw = M · Pr(ir, iw|dr, dw) · Pr(dr, dw), M r
ir =

∑
iw

Miriw , and Mw
iw =

∑
ir

Miriw .

Lastly, average income of consumers who work in zone iw is Iiw = E[wd(iw)vd(iw)] = Γ
(
1− 1

εv

)
wd(iw),

and the expected welfare of consumers in the city is Ū = Γ
(
1− 1

εz

)
· (
∑

d(Ud)
εz)1/εz .

66



Tradable Goods Sector. In each district d, there is a representative firm in the tradable goods sector
that produces a homogeneous final good. This final good is freely traded within the city at the price
ptradable. The production technology combines labor and floor space and features constant returns to
scale:

yd = θθ(1− θ)1−θAtradable
d (Ltradable

d )θ(Htradable
d )1−θ

where Atradable
d is district-specific productivity, Ltradable

d and Htradable
d are labor and floor space inputs

respectively, and θ is the labor share. A representative firm decides how to combine inputs and how
much to produce in a competitive manner. Perfect competition implies that marginal cost equals to the
price, ptradable = wθ

dwr
1−θ
dw /Atradable

dw .

Labor Market. Firms in both the tradable goods and services sectors demand labor, while workers’
workplace choices determine labor supply. The equilibrium wage clears the district-level labor markets

Mw
d = Ltradable

d + Lservices
d for all d.

Land Market. Floor space in each district,Hd, is supplied by the competitive construction sector using
the production function, Kµ

d T
1−µ
d , where Kd is capital and Td is land. We assume that the cost of

capital rK is exogenously determined in the world capital market, and the land price is determined in
the local land market. Then, floor space supply, Hd = H̄Tdr

µ
1−µ

d , increases in the floor space price rd
where H̄ = (µ/rk)

µ
1−µ is a constant. Floor space can be used for residential purposes Hr

d , producing
the tradable goods Htradable

d , or producing consumption services Hservice
d . We assume that there exist

zone-specific land use regulations for services production. We summarize this regulation with the floor
space wedge, ϱi. Then, the floor space price for services sector is given by rsi = ϱird(i). We assume
zero net transfers to land usage of services sector on average, i.e., 1

Nd

∑
i∈d r

s
i = rd(i) where Nd is the

number of zones in district d. The land market clearing condition is given by

H̄Tdr
µ

1−µ

d = Hr
d +Htradable

d +Hservice
d , for all d

where

Hr
d =

1

rd
µℓ

∑
d

Mdrd

M r
dr

Id, Htradable
d =

1

rd

1− θ

θ
wdL

tradable
d , and Hservice

d =
ρ− 1

ρ
γ
∑
i∈d

1

rsi

(∑
sd

Risd

)
.

Agglomeration. Following the literature, we assume that local productivity of the tradable goods,
Atradable

d , and residential amenity, Bd, feature externalities. In particular, they are increasing in local
residential or working population density,

Atradable
d = Ātradable

d · (Mw
d /Td)

ηA ,

Bd = B̄d · (M r
d/Td)

ηB ,
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where Ātradable
d and B̄d are exogenous fundamentals, and ηA and ηB are the degree of agglomeration.

We assume there exists no spillovers across districts.

Equilibrium Conditions. We define the general equilibrium.

Definition A.2 (General Equilibrium). Given exogenous values of productivity {Ātradable
d }, amenity

{B̄d}, land supply {Td}, rent wedges {ϱi}, the total number of workers M , and distance {d(·, ·)}, general
equilibrium consists of the worker distribution Miriw , rent prices {rd}, and wages {wd} such that (i)
workers optimally choose their resident and workplace districts; (ii) firms in the tradable goods sector
maximize their profits; (iii) floor space suppliers maximize their profits; (iv) all conditions for the
services market equilibrium hold; and (v) all markets clear.
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C. Appendix for Section 4

C.1 Model Inversion: Identifying Productivity

We can invert the model to obtain a mapping from the observed data to the unobserved variables. To
formalize the idea, we divide the variables and parameters into four sets. The first set P contains the
parameters of the model. The second set Sexo contains variables exogenous to our model. The third set
SPE contains variables that are endogenously determined in the services market equilibrium. Finally,
the fourth set SGE contains variables that are taken as given in the services market but are determined in
the general equilibrium.
We further partition P into three subsets: Pcal for externally calibrated parameters, PPE for parameters

estimated from the services market equilibrium model, and PGE for parameters calibrated or estimated
from the general equilibrium model. Similarly, we split the exogenous variables in Sexo into Scalexo, SPEexo,
and SGEexo. Moreover, within each set SPE and SGE, we further divide the variables into those that we can
observe in the data, Sobsi , and unobserved variables Sunobsi .

Pcal = {µ,α, ρ, γ, β} PPE = {τ̃ , φ̃, ε, σ, ν} PGE = {κ, εz, εv, θ, ηA, ηB}

Scalexo = {J ,S,D,d,T } SPEexo = {Ã,C} SGEexo = {B̄, Ā
tradable

, ξ}

SobsPE = {N ,R} SunobsPE = {P ,p, q,Hservice,Lservice,Π}

SobsGE = {r,w,M , I,E,M} SunobsGE = {Hr,Htradable,Ltradable}

where the bold letters denote vectors. The services market equilibrium model is essentially a mapping
from Pcal ∪PPE ∪Scalexo ∪SPEexo ∪SobsGE to SPE, and the general equilibrium model is a mapping from P∪Sexo
to SPE ∪ SGE. The following lemma shows that we can invert these mappings to back out location
characteristics from the observed data.

Lemma A.8 (Equilibrium Inversion). Given Pcal, PPE, Scal
exo, and Sobs

GE , there exist unique values of the
location characteristics SPE

exo that rationalize the observed data Sobs
PE . Given P, Scal

exo, and SPE
exo, there exist

unique values of the location characteristics SGE
exo that rationalize the observed data Sobs

PE and Sobs
GE .

Proof. Lemma A.8 is a direct application of Proposition 2 in Ahlfeldt et al. (2015).

The first part of Lemma A.8 implies that, once we have data on SobsGE , we can back out the composite
productivity and operating costs without relying on the general equilibrium component of the model. In
Section 4.1, we use this lemma to estimate the services market equilibrium parameters, PPE, separately
from the general equilibrium parameters, PGE. The advantage of this approach is that we can estimate
the services market equilibrium model without explicitly specifying the general equilibrium structure,
as long as we have access to data on SobsGE . Thus, the estimation procedure remains robust to any potential
misspecification of our general equilibrium model.
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Figure A.3. Gravity fit

Notes: Data source: Korean Household Travel Survey (2016).
The blue line is the 45-degree line.

C.2 Fit of the Estimated Gravity Equation

C.3 Parameter Estimation: General Equilibrium Model

In this section, we discuss the estimation procedure of general equilibrium. In Figure A.3, we plot the
predicted the number of services travel against the observed number of services travel. It demonstrates
that the flow of services travel is well approximated by the gravity equation.
We calibrate the GE parameters mostly from the literature or directly from the moments in the data.

We summarize the parameter values in Table A.9.
We estimate commuting disutility parameters by running a gravity equation using commuting flows

from Household Travel Survey. To do this, we first aggregate the data to the district level and then
employ the PPML estimator with border effects, similar to our estimation approach for services travel
parameters.
Next, we calculate the total expenditure share on services, µr

c + µw
c , using the total revenue of

services sectors and the total income. We first rescale the total revenue in 2019 from the Commercial
District dataset. Although the dataset covers most of the regions of Seoul, it is not universal since it only
includes the stores in the commercial areas. Comparing the total number of restaurants in Seoul in 2017,
our dataset includes 96.28% of restaurants in Seoul (Seoul Business Survey, 2017). Thus, we increase
the total revenue in 2019 by 3.86% and divide it with the total population to get the average monthly
total services revenue per capita. We take the average income per capita in Seoul from Statistics Korea
(2019). We then adjust the average income to take into account that 50% of households in Seoul live in
their own house and do not pay rents (Korea Housing Survey, 2019). Thus, we scale up their income by

1
1−µℓ
. Dividing the revenue per capita with the average income, we obtain that the spending share on

services, µr
c + µw

c , equals 27%.
We use residential population data at the zone level provided by Seoul Metropolitan Government

(2019) and calculate the conditional probability Prr(ir|dr) for each district. Similarly, we use Seoul
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Table A.9: Calibration Results: GE

Parameter Description Value Source

κεv Commuting Travel Elasticity 0.0605 Gravity
φκ Commuting Travel Border Effects 1.266 Gravity
µr
c + µw

c Total services spending share 0.27 Total revenue, Incomea

µℓ Housing spending share 0.25 Davis and Ortalo-Magné (2011)
1− θ Share on floor space of tradable goods 0.2 Valentinyi and Herrendorf (2008)
1− µ Share on land of floor space production 0.25 Combes, Duranton, and Gobillon (2012)
εv, εz Preference scale 6, 6 Ahlfeldt et al. (2015)
ηA, ηB Agglomeration 0.07, 0.15 Ahlfeldt et al. (2015)b

a Source: Seoul Commercial Area Data and Statistics of Korea.
b Tsivanidis (2019) estimates ηA = 0.212 and ηB ∈ [0.419, 0.576], which are larger than the estimates obtained by Ahlfeldt
et al. (2015) using a German dataset. As Korea is a developed country, we take the results of Ahlfeldt et al. (2015).

Business Survey which provides the total number of workers of each zone and calculate the conditional
probability Prw(iw|dw) for each district.
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Table A.10: College Premium

Income Income, Rent Income, Rent, SMA

Low-skilled 220.7 221.3 220.77
High-skilled 325.9 324.8 325.65
College premium 47.7% 46.1% 47.5%

Notes: Data source: Korean Labor Panel (2019). We drop outliers with the top and the bottom 1% of
income to remove noises in data.

D. Appendix for Sections 5 and 6

D.1 SMA and (Real) Income Inequality

Does SMA inequality exacerbate or alleviate welfare inequality between the rich and the poor? In this
section, we show that SMA inequality worsens real income inequality and the magnitude of its impact is
larger than that of housing rents. We define high-skilled workers as college graduates. We use income
data from Korean Labor Panel (2019) and focus on workers who live in Seoul with positive income.
Based on the equation (3), we can define real incomes of workers who live in district dr as below.

real income = nominal income · rent−µℓ
dr · SMAµr

c+µw
c

dr .

In the first column of Table A.10, we first report the college premium on nominal income. On average,
high-skilled workers earn 47.7% higher income than low-skilled workers. It is smaller than that of
US, which is about 79% (BLS, 2020), but still the magnitude is very large. In the next column, we
report the college premium after adjusting the differences in housing rents. College graduates who earn
higher income tend to live in regions with higher housing rents. Thus, the college premium decreases to
46.1%.59 Finally, in the last column of Table A.10, we compute real income, which additionally adjusts
the differences in SMA—the inverse of the price index of services.60 The college premium increases
from 46.1% to 47.5%. High-skilled workers live in regions with higher housing rents, but at the same
time, they enjoy higher SMA. This better access to the services market widens the real income gap
between high- and low-skilled workers.
It is striking that effects of SMA inequality on real income gap is as important as those of rents

dispersion. Most of the literature has focused on how housing prices affect spatial inequality, but the
result shows that services markets are as important as housing markets. Although some studies consider
the implications of non-tradable goods, they typically focus on the price dispersion across cities. In

59 One limitation is that we only have residence information at the district level. This can potentially lead to downward bias
to the importance of housing rents.

60We compute district-level SMA by taking an average using the population distribution,

SMAdr =
∑
ir,iw

Pr(ir, iw|dr)SMA
µr
c

µr
c+µw

c
ir SMA

µw
c

µr
c+µw

c
iw .
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this case, the price index for non-tradable goods is typically higher in urban areas, dampening the real
income dispersion.61 On the contrary, we claim that SMA differentials exacerbate income inequality
within cities as high skilled workers can enjoy better access to the services market.

D.2 Transportation Improvement

The magnitude of spatial frictions is critical for the dispersion of SMA. For example, if one incorrectly
assumes that a consumer can only purchase services goods from her own region—i.e., travel costs
are infinite τ = ∞—then SMA inequality would be 90% higher than the baseline estimate. This
observation suggests that improving transportation infrastructure can be an effective measure to reduce
SMA inequality. In this section, we explore how the distribution of services and SMA inequality change
when transportation improves. We show that transportation improvement is an effective way to reduce
SMA inequality, but the effectiveness is muted due to the endogenous response of services distribution.
To quantify these effects, we consider a counterfactual exercise in which we gradually reduce travel

costs. We decrease travel costs parameters from the current levels (τ, φ) to (ζτ, ζφ), ζ ∈ [0, 1]. We
decompose changes in SMA into two parts: direct effects and indirect effects. Direct effects isolate
impacts of the decrease in travel costs, holding the distribution of services stores fixed. As a consumer
can more easily access other regions, her current region becomes less important in determining SMA,
leading to a decrease in SMA inequality. Indirect effects measure impacts through the endogenous
change in the distribution of services stores.
We define two counterfactual measures of SMA. First, for direct effects, we recursively define

SMAD
i (ζ) = exp

(∑
s

ναs log

(∑
j

e−ζ τ
ν
d(i,j)−ζ φ

ν
1i ̸=jp

−1/ν
js · (SMAD

j (ζ))
β
ν

))

where we fix pjs at the estimated levels, i.e., holding fixed the distribution of services. Second, for
indirect effect, we define SMAP

i (ζ),

SMAP
i (ζ) = exp

(∑
s

ναs log

(∑
j

e−
τ
ν
d(i,j)−φ

ν
1i ̸=jpjs(ζ)

−1/ν · (SMAP
j (ζ))

β
ν

))

where we fix travel costs but use counterfactual prices pjs(ζ) computed under the new equilibrium
distribution of services stores.
In Figure A.4, we plot SMA inequality, measured by standard deviation of log(SMA), while varying

transportation costs. From the left panel, we find that transportation improvement significantly decreases
SAM inequality. About 30% decline in travel costs results in about an 18% decline in inequality. In the
middle panel, we isolate direct effects and plot the standard deviation of logSMAD

i . As transportation
improves, the direct effect lowers SMA inequality as expected. Finally, in the right panel, we plot
the standard deviation of logSMAP

i . The endogenous response of the distribution of services has a

61 One exception is Handbury and Weinstein (2015) who focus on heterogeneity and the variety of goods. They argue that
large cities have wider variety of goods which can contribute to a lower price index for food products in large cities.
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Figure A.4. Transportation improvement: SMA inequality

non-monotonic impact on inequality. Transportation improvement initially increases SMA dispersion.
As travel becomes easier, consumers are more willing to travel to distant regions, further increasing
services concentration and resulting in increased SMA inequality even without direct impacts. However,
if we further decrease travel costs, geographic locations become less important, and SMA inequality
starts to decline. This discussion highlights the importance of indirect general equilibrium effects for
valid policy evaluation which can weaken the impact of transportation improvements on SMA inequality.
For example, after a 30% decline in travel costs, if the distribution of services stores remains unchanged,
the inequality declines by 25%, which is much larger than the total effects, 18%.

74



E. Survey Questions

This survey is for the study of consumers' offline consumption spending behavior. Please carefully 

read the explanation below before taking the survey. In this survey, the term "purchase" refers to 

spending on the following three categories, made through in-person transactions (i.e., excluding 

online shopping). 

1. Foods: restaurant, Café, bakery, bars, etc. 

2. Retail: convenience stores, groceries, clothing, shoes, cosmetics, books, furniture, home 

appliances, gas stations, etc. 

3. Other services: gym, beauty salon, skincare, car repair, laundry, billiard room, golf practice 

center, etc. 

This survey will ask you about the number of times you went out during the day and the stores 

you visited for each trip. Please count the number of stores you made a purchase for an instance 

of travel as follows. 

Example 1) Buying coffee at a Café on the way back from a restaurant near your workplace 

at lunchtime: 2 stores 

Example 2) Visiting a department store, buying three items of clothing at the first clothing 

store and vising a second shoe store without making a purchase, then buying lotion at the 

cosmetics section. After that, buying groceries for the week at a supermarket when 

returning home: 3 stores 

Example 3) On the way to work from home, stopping at a convenience store for buying 

snacks and drinks: 1 store 

If you have already returned to your home, work, or your next destination unrelated to your purchase, 

and have gone out again on the same day after completing the travel, please write it as separate 

travel. 

 

What is your gender? 

a. Male 

b. Female 

c. Others, or refuse to answer 

What is the year of your birth? 
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Questions 1 to 4 are about basic personal information. 

1. What is your final educational background? (If you are currently a student, respond to the 

educational institution you are attending) 

a. Elementary/middle/high school 

b. College and above 

2. What is your occupation? 

a. Office/expert/manager (e.g., teachers, public officials) 

b. Services/sales/function/agriculture/other (e.g., cook, hairdresser, sales profession) 

c. Looking for a job/unemployment, etc. 

d. Housewives 

e. Students 

3. Which “Dong” does your home belong to? 

4. Which “Dong” does your workplace or school belong to? 

 

Questions 5 to 8 are questions about offline consumption expenditure during the week. 

5. Have you been out to eat, shop, or buy other services during the most recent Thursday (except 

today)? If you don't, please choose a day when you were out. 

a. Yes. I went out on Thursday. 

b. No. Not on Thu, but on Wednesday. 

c. No. Not on Wed/Thu, but on Tuesday. 

d. No. Not on Tue/Wed/Thu, but on Monday. 

e. No. Not on Mon/Tue/Wed/Thu, but on Friday. 

f. No, I haven't been out for purchase in the past week (please recall the most recent 

weekday outing). 

6. How many purchases did you make in total during your first trip on the day of the week selected 

in question 5? Please write down the total number of stores you visited for making any (non-

zero) purchases.  
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7. How many purchases did you make in total during your second trip on the day of the week 

selected in question 5? Please write down the total number of stores you visited for making any 

(non-zero) purchases. 

8. How many purchases did you make in total during your third trip on the day of the week 

selected in question 5? Please write down the total number of stores you visited for making any 

(non-zero) purchases. 

9. How many purchases did you make in total during your fourth trip on the day of the week 

selected in question 5? Please write down the total number of stores you visited for making any 

(non-zero) purchases. 

 

From now on, please answer about the travel with the highest total number of purchases (select 

outings in front of you in case of redundancy) among responses in questions 6-8 above. 

10. Please answer the location and types of the departure area where you started the travel. 

a.      “Dong” 

b. Home/School/Workplace/Others 

11. Please answer the location and types of the destination where you ended the travel. 

a.      “Dong” 

b. Home/School/Workplace/Others 

12. Please write down about your first purchase of travel. 

a. Location:      “Dong” 

b. Purpose: (1) restaurants (2) shopping/retail (3) other services 

c. Details (e.g., Chinese restaurants, convenience stores, bookstores, car repairs, etc.) 

13. Is there any additional purchase after the first purchase for this travel? If so, please respond. 

a. Travel ended after the first purchase. 

b. Location:      “Dong” 

c. Purpose: (1) restaurants (2) shopping/retail (3) other services 

d. Details (e.g., Chinese restaurants, convenience stores, bookstores, car repairs, etc.) 
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From now on, the same question is about going out on weekends, not weekdays. Please respond 

in the same way as before. 

14. Have you been out to eat, shop, or buy other services during the most recent Saturday (except 

today)? If you don't have one, please write down your travel on Sunday or the previous weekend. 

a. Yes. I went out on Saturday. 

b. No. Not on Sat, but on Sunday. 

c. No. I haven't been out on Saturday/Sunday most recently, but I went out on 

Saturday/Sunday the week before. 

d. No. I haven't been out on weekends for the last two weeks (please recall the most recent 

weekend outing). 

15. How many purchases did you make in total during your first trip on the day of the weekend 

selected in question 14? Please write down the total number of stores you visited for making 

any (non-zero) purchases. 

16. How many purchases did you make in total during your second trip on the day of the weekend 

selected in question 14? Please write down the total number of stores you visited for making 

any (non-zero) purchases. 

17. How many purchases did you make in total during your third trip on the day of the weekend 

selected in question 14? Please write down the total number of stores you visited for making 

any (non-zero) purchases. 

18. How many purchases did you make in total during your fourth trip on the day of the weekend 

selected in question 14? Please write down the total number of stores you visited for making 

any (non-zero) purchases. 

 

From now on, please answer about the travel with the highest total number of purchases (select 

outings in front of you in case of redundancy) among responses in questions 6-8 above. 

19. Please answer the location and types of the departure area where you started the travel. 

a.      “Dong” 

b. Home/School/Workplace/Others 

20. Please answer the location and types of the destination where you ended the travel. 
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a.      “Dong” 

b. Home/School/Workplace/Others 

21. Please write down about your first purchase of travel. 

a. Location:     “Dong” 

b. Purpose: (1) restaurants (2) shopping/retail (3) other services 

c. Details (e.g., Chinese restaurants, convenience stores, bookstores, car repairs, etc.) 

22. Is there any additional purchase after the first purchase for this travel? If so, please respond. 

a. Travel ended after the first purchase. 

b. Location:     “Dong”  

c. Purpose: (1) restaurants (2) shopping/retail (3) other services 

d. Details (e.g., Chinese restaurants, convenience stores, bookstores, car repairs, etc.) 
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F. Omitted Proofs

Proof of Proposition 1. The free entry condition equates profits and operating costs:

(ρ− 1)σ−1

ρσ
· Cjsd =

1

ρ
· pjsd(ω) · qjsd(ω)

=
1

ρ
· pjsd(ω) ·

(
pjsd(ω)

pjsd

)−ρ

· ϕjsd ·
(
pjsd
pjs

)−σ

· Rjs

pjs

=
1

ρ
· pjsd(ω)1−σ ·N

ρ−σ
1−ρ

jsd · ϕjsd · p−(1−σ)
js ·Rjs

=
1

ρ
·
(

ρ

ρ− 1

)1−σ

c1−σ
jsd ·A−(1−σ)

jsd ·N
ρ−σ
1−ρ

jsd · ϕjsd · p−(1−σ)
js · (1− β)αsE

T(I − βΠ)−1πs
j

where the third equality uses the fact that, imposing symmetry across individual stores, we have pjsd =

pjsd(ω) ·N
1

1−ρ

jsd . Rearranging proves the proposition.

Proof of Lemma A.2. The first two conditions can be linearized as

(1− 1− σ

1− ρ
)njsd = −Ĉjsd − (1− σ)ãjsd + (1− σ)ĉjsd − (1− σ)p̂js + rjs (A.1∗)

p̂js =
∑
d

θjsd(
1

1− ρ
njsd − ãjsd + ĉjsd) ≡ ĉjs − (

1

ρ− 1
njs + ãjs) ≡ −(

1

ρ− 1
njs + ǎjs). (A.2∗)

Aggregating (A.1∗), we have

njs =
ρ− 1

ρ− σ

(
−Ĉjs − (1− σ)ãjs + (1− σ)ĉjs − (1− σ)p̂js + rjs

)
(A.1∗∗)

so that
p̂js = −ǎjs +

1
ρ−1 Ĉjs − 1

ρ−1rjs ≡ −ǎ∗js − 1
ρ−1rjs.

The third condition becomes

V̂ (i) =
∑
s

αs ·
∑
j

πs
ij

(
−p̂js + βV̂ (j)

)
= −

∑
s

αs ·
∑
j

πs
ij p̂js

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡P̂i

+ β
∑
j

πij V̂ (j)

= −P̂i − β
∑
j

πijP̂j + o(x). (A.3∗)

Next, we have

rjs =
∑
i

(1− β)λs
ij(ei + π̂s

ij) +
∑
i

∑
k

∑
s′

βλs′s
ikj(ei + π̂s′

ik + π̂s
kj) (A.4∗)

where λs
ij =

Eiπ
s
ij

Λ
and λs′s

ikj =
Eiαs′π

s′

ikπ
s
kj

Λ
with Λ = (1− β)

∑
i Eiπ

s
ij + β

∑
iks′ Eiαs′π

s′

ikπ
s
kj . Finally, we have

π̂s
ij =

∑
j′

(1j′=j − πs
ij′)
(
− 1

ν p̂j′s + β̃V̂ (j′)
)
=
∑
j′

(1j′=j − πs
ij′)
(
− 1

ν p̂j′s − β̃P̂j′
)
+ o(x)

=
∑
j′

(1j′=j − πs
ij′)

(
− 1

ν p̂j′s − β̃
∑
s′

αs′ ·
∑
j′′

πs′

j′j′′ p̂j′′s′

)
+ o(x) (A.5∗)
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Proof of Proposition A.1. Let us suppose for the moment that p̂js = o(x) and rjs = o(x) for j ̸= j0. Then for any j,
we have

π̂s
ij =

∑
j′

(1j′=j − πs
ij′)

(
− 1

ν p̂j′s − β̃
∑
s′

αs′ · πs′

j′j0 p̂j0s′

)
+ o(x)

= (1j0=j − πs
ij0)

(
− 1

ν p̂j0s − β̃
∑
s′

αs′ · πs′

j0j0 p̂j0s′

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡q̂j0s

+ o(x).

Under Assumption A.2, this can be further simplified as

π̂s
ij =


0 if i, j ̸= j0
−πs

j0j0
q̂j0s if i = j0, j ̸= j0

q̂j0s if i ̸= j0, j = j0
(1− πs

j0j0
)q̂j0s if i = j0, j = j0

+ o(x)

Note also the following lemma:

Lemma A.9. For j ̸= j0, Assumption A.2 implies

(1− β)λs
j0j + β

∑
k,s′

λs′s
j0kj = o(x) (A.21)

and
β
∑

i̸=j0,s′

λs′s
ij0j = o(x).

We thus have, for j ̸= j0,

rjs =
∑
i

(1− β)λs
ij π̂

s
ij +

∑
i

∑
k

∑
s′

βλs′s
ikj(π̂

s′

ik + π̂s
kj)

= (1− β)λs
j0j π̂

s
j0j + β

∑
k ̸=j0,s′

λs′s
j0kj π̂

s′

j0k + β
∑
i,s′

λs′s
ij0j(π̂

s′

ij0 + π̂s
j0j) + o(x) (∵ ignore π̂’s without j0)

≤

[
(1− β)λs

j0j + β
∑
k,s′

λs′s
j0kj + β

∑
i ̸=j0,s′

λs′s
ij0j

]
· max
i,k,s,s′

{π̂s′

ij0 + π̂s
j0k}

= o(x)
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where the last inequality follows from Lemma A.9. Thus, we indeed have rjs = o(x) and, hence, p̂js = o(x) for
j ̸= j0. In this case, we can also simplify rj0s and get the following result: We have, up to o(x),

rj0s =
∑
i

(1− β)λs
ij0 π̂

s
ij0 +

∑
iks′

βλs′s
ikj0(π̂

s′

ik + π̂s
kj0)

=
∑
i

(1− β)λs
ij0 q̂j0s − (1− β)λs

j0j0π
s
j0j0 q̂j0s +

∑
iks′

βλs′s
ikj0(π̂

s′

ik + q̂j0s)−
∑
is′

βλs′s
ij0j0π

s
j0j0 q̂j0s

= q̂j0s

(
1−

(
(1− β)λs

j0j0 +
∑
is′

βλs′s
ij0j0

)
πs
j0j0

)
+

∑
i=j0 or k=j0,s′

βλs′s
ikj0 π̂

s′

ik

= q̂j0s

(
1−

(
(1− β)λs

j0j0 +
∑
is′

βλs′s
ij0j0

)
πs
j0j0

)
+
∑
is′

βλs′s
ij0j0 π̂

s′

ij0 +
∑

k ̸=j0,s′

βλs′s
j0kj0 π̂

s′

j0k

= q̂j0s

(
1−

(
(1− β)λs

j0j0 +
∑
is′

βλs′s
ij0j0

)
πs
j0j0

)
+
∑
s′

q̂j0s′

(∑
i

βλs′s
ij0j0(1− πs

j0j0 · 1i=j0)

)
+

∑
k ̸=j0,s′

βλs′s
j0kj0 π̂

s′

j0k.

Note that

∑
k ̸=j0,s′

λs′s
j0kj0 =

∑
k ̸=j0,s′

Ej0αs′π
s′

j0k
πs
kj0

(1− β)
∑

i Eiπs
ij0

+ · · ·

≤
maxs′

{
Ej0

∑
k ̸=j0

πs′

j0k
πs
kj0

}
(1− β)Ej0π

s
j0j0

=
maxs′

{∑
k ̸=j0

πs′

j0k
πs
kj0

}
(1− β)πs

j0j0

≤
maxs′

{∑
k ̸=j0

πs
kj0

}
(1− β)πs

j0j0

= o(1).

Finally, Ψj0s,Φ
s′

j0s
∈ (0, 1) is immediate.

Proof of Lemma A.9. We have

Rj0→js = (1− β)αsEj0π
s
j0j + (1− β)βαs

∑
k

Ej0πj0kπ
s
kj + (1− β)β2αs

∑
k,l

Ej0πj0kπklπ
s
lj + · · ·

Rjs = (1− β)αs

∑
i

Eiπ
s
ij + (1− β)βαs

∑
iks′

Eiαs′π
s′

ikπ
s
kj + o(x)

< 2

(
(1− β)αs

∑
i

Eiπ
s
ij + βαs

∑
iks′

Eiαs′π
s′

ikπ
s
kj

)
.

Thus,

(1− β)λs
j0j + β

∑
k,s′

λs′s
j0kj =

(1− β)Ej0π
s
j0j

+ β
∑

ks′ Ej0αs′π
s′

j0k
πs
kj

(1− β)
∑

i Eiπs
ij + β

∑
iks′ Eiαs′πs′

ikπ
s
kj

<
Rj0→js/(1− β)

Rjs/2
= o(x)

which proves the first claim. Second,

β
∑

i̸=j0,s′

λs′s
ij0j = β

∑
i ̸=j0,s′

Eiαs′π
s′

ij0
πs
j0j

(1− β)
∑

i Eiπs
ij + β

∑
iks′ Eiαs′πs′

ikπ
s
kj

= βmax
s′

{∑
i ̸=j0

Eiπ
s′

ij0

}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

o(1)

πs
j0j

(1− β)
∑

i Eiπs
ij + β

∑
iks′ Eiαs′πs′

ikπ
s
kj

+ o(x)

= o(x).

82



Proof of Corollary A.1. First, note that, up to o(1), we have

rj0s = Ψj0sq̂j0s = Ψj0s(− 1
ν p̂j0s) = Ψj0s

(
1
ν ǎ

∗
j0s +

1
ν

1
ρ−1rj0s

)
hence

rj0s =
Ψj0s

1
ν ǎ

∗
j0s

1−Ψj0s
1
ν

1
ρ−1

> 0

where we use 1
ρ−1

1
ν < 1 from Assumption A.1 and Ψj0s < 1. This highlights that we need to assume 1

ρ−1
1
ν < 1

in order to guarantee stable equilibrium. This in turn implies the rest of inequalities in (A.6), except for that of
njs, which follows from

nj0s
sgn
= −Ĉj0s + (σ − 1)ǎj0s + (σ − 1)p̂j0s + rj0s

= −Ĉj0s + (σ − 1)ǎj0s − (σ − 1)ǎ∗j0s +
ρ−σ
ρ−1 rj0s

= −ρ−σ
ρ−1 Ĉj0s +

ρ−σ
ρ−1 rj0s

> 0.

Proof of Proposition A.2. First, we rewrite the change in revenue as

rj0s = Ψj0sq̂j0s +
∑
s′

Φs′

j0sq̂j0s′ + o(x)

= Ψj0s(− 1
ν p̂j0s − β̃

∑
s′

αs′π
s′

j0j0 p̂j0s′) +
∑
s′

Φs′

j0s(−
1
ν p̂j0s′) + o(x)

= −Θj0sp̂j0s −
∑
s′ ̸=s

Λs′

j0sp̂j0s′ + o(x)

= Θj0s

(
ǎj0s +

1
ρ−1nj0s

)
+
∑
s′ ̸=s

Λs′

j0s

(
ǎj0s′ +

1
ρ−1nj0s′

)
+ o(x)

where
Θj0s = Ψj0s · 1

ν +Φs
j0s ·

1
ν + β̃Ψj0sαsπ

s
j0j0 > 0,

Λs′

j0s = Φs′

j0s ·
1
ν + β̃Ψj0sαs′π

s′

j0j0 > 0.

Using this result, we first prove the following intermediate result.

Lemma A.10. Under Assumption A.2 and up to o(x), we have

nj0s = −Ĉj0s +Θj0s

(
ǎj0s +

1
ρ−1nj0s

)
+
∑
s′ ̸=s

Λs′

j0s

(
ǎj0s′ +

1
ρ−1nj0s′

)
≡ γ̃1

j0sǎj0s +
∑
s′ ̸=s

γ̃2s′

j0s

(
ǎj0s′ +

1
ρ−1nj0s′

)
− γ̃3

j0sĈj0s

nj0sd = nj0s + κ(ǎ∗j0sd − ǎ∗j0s)− (Ĉj0sd − Ĉjs)

where
κ = (σ−1)(ρ−1)

ρ−σ , γ̃1
j0s = Θj0s ·

1

1− Θj0s

ρ−1

, γ̃2s′

j0s = Λs′

j0s ·
1

1− Θj0s

ρ−1

, γ̃3
j0s =

1

1− Θj0s

ρ−1

.

In particular, γ̃’s and κ are positive.
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Thus, we can write
nj01

nj02

nj03

 =
1

ρ− 1

 0 γ̃22
j01

γ̃23
j01

γ̃21
j02

0 γ̃23
j02

γ̃21
j03

γ̃22
j03

0

nj01

nj02

nj03

+

γ̃1
j01

γ̃22
j01

γ̃23
j01

γ̃21
j02

γ̃1
j02

γ̃23
j02

γ̃21
j03

γ̃22
j03

γ̃1
j03

ǎj01
ǎj02
ǎj03

−

γ̃3
j01

0 0
0 γ̃3

j02
0

0 0 γ̃3
j03

Ĉj01

Ĉj02

Ĉj03


nj0 =

1

ρ− 1
Γ2nj0 + (Γ1 + Γ2)ǎj0 − Γ3Ĉj0

nj0 =

(
I − 1

ρ− 1
Γ2

)−1(
(Γ1 + Γ2)ǎj0 − Γ3Ĉj0

)
where Γ2 = o(1)

=

(
I +

1

ρ− 1
Γ2

)(
(Γ1 + Γ2)ǎj0 − Γ3Ĉj0

)
+ o(x)

=

(
Γ1 + Γ2 +

1

ρ− 1
Γ2Γ1

)
ǎj0 −

(
Γ3 +

1

ρ− 1
Γ2Γ3

)
Ĉj0 + o(x)

=

 γ̃1
j01

(1 + 1
ρ−1 γ̃

1
j02

)γ̃22
j01

(1 + 1
ρ−1 γ̃

1
j03

)γ̃23
j01

(1 + 1
ρ−1 γ̃

1
j01

)γ̃21
j02

γ̃1
j02

(1 + 1
ρ−1 γ̃

1
j03

)γ̃23
j02

(1 + 1
ρ−1 γ̃

1
j01

)γ̃21
j03

(1 + 1
ρ−1 γ̃

1
j02

)γ̃22
j03

γ̃1
j03

ǎj0 −

 γ̃3
j01

1
ρ−1 γ̃

3
j02

γ̃22
j01

1
ρ−1 γ̃

3
j03

γ̃23
j01

1
ρ−1 γ̃

3
j01

γ̃21
j02

γ̃3
j02

1
ρ−1 γ̃

3
j03

γ̃23
j02

1
ρ−1 γ̃

3
j01

γ̃21
j03

1
ρ−1 γ̃

3
j02

γ̃22
j03

γ̃3
j03

Ĉj0

∴ nj0s = γ̃1
j0sǎj0s − γ̃3

j0sĈj0s +
∑
s′ ̸=s

(
τ̃2s

′

j0s ǎj0s′ − κ̃2s′

j0sĈj0s′

)
+ o(x)

where
τ̃2s

′

j0s =
(
1 + 1

ρ−1 γ̃
1
j0s′

)
γ̃2s′

j0s and κ̃2s′

j0s =
1

ρ−1 γ̃
3
j0s′ γ̃

2s′

j0s.

This can be rewritten as

nj0s = γ1
j0sǎ

∗
j0s − γ3

j0sĈj0s +
∑
s′ ̸=s

(
τ2s

′

j0s ǎ
∗
j0s′ − κ2s′

j0sĈj0s′

)
+ o(x)

where γ1
j0s

= γ̃1
j0s
, γ3

j0s
= γ̃3

j0s
− γ̃1

j0s

ρ−1 , τ
2s′

j0s
= τ̃2s

′

j0s
, and κ2s′

j0s
= κ̃2s′

j0s
− τ̃2s′

j0s

ρ−1 . It turns out that, these four coefficients
can be simplified as

γ1
j0s = γ̃1

j0s = Θj0s
1

1− Θj0s

ρ−1

γ3
j0s = γ̃3

j0s −
γ̃1
j0s

ρ−1 =
(
1− Θj0s

ρ−1

)
· 1

1− Θj0s

ρ−1

= 1

τ2s
′

j0s = τ̃2s
′

j0s =
(
1 + 1

ρ−1 γ̃
1
j0s′

)
γ̃2s′

j0s = Λs′

j0s

1

1− Θj0s

ρ−1

1

1− Θj0s′

ρ−1

κ2s′

j0s = κ̃2s′

j0s −
τ̃2s′
j0s

ρ−1 = 1
ρ−1

(
γ̃3
j0s′ γ̃

2s′

j0s −
(
1 + 1

ρ−1 γ̃
1
j0s′

)
γ̃2s′

j0s

)
= 1

ρ−1γ
2s′

j0s

(
1

1− Θj0s′

ρ−1

− 1− Θj0s′

ρ− 1

1

1− Θj0s′

ρ−1

)
= 0.

Finally, it is clear from its definition that τ2s′j0s
vanishes as β ↓ 0.

Proof of Lemma A.10. We have

ρ−σ
ρ−1±
>0

nj0sd = −Ĉj0sd + (σ − 1)ǎj0sd + (σ − 1)p̂j0s + rj0s

= −ρ−σ
ρ−1 Ĉj0sd + (σ − 1)ǎ∗j0sd − (σ − 1)ǎ∗j0s +

ρ−σ
ρ−1 rj0s
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=⇒ nj0sd = −Ĉj0sd + κ(ǎ∗j0sd − ǎ∗j0s) + rj0s

=⇒ nj0s = −Ĉj0s + rj0s

= −Ĉj0s +Θj0s

(
ǎj0s +

1
ρ−1nj0s

)
+
∑
s′ ̸=s

Λs′

j0s

(
ǎj0s′ +

1
ρ−1nj0s′

)
=⇒ (1− Θj0s

ρ−1 )nj0s = −Ĉj0s +Θj0sǎj0s +
∑
s′ ̸=s

Λs′

j0s

(
ǎj0s′ +

1
ρ−1nj0s′

)
=⇒ nj0s = γ̃1

j0sǎj0s +
∑
s′ ̸=s

γ̃2s′

j0s

(
ǎj0s′ +

1
ρ−1nj0s′

)
− γ̃3

j0sĈj0s.

Note that 1− Θj0s

ρ−1 = 1− 1
ν

1
ρ−1 (1− λs

j0j0
πs
j0j0

) + o(1) ∈ (0, 1) under Assumption A.1.

Proof of Proposition A.3. Define γ2j ≡ d logΥ2j , which can be simplified to

γ2j =
∑
s

φjs

∑
d

θjsd(Ĉjsd + njsd)

=
∑
s

φjs(Ĉjs + njs)

=
∑
s

φjs(
¯̂
Cjs + njs)− εc · γ2j

= 1
1+εc

∑
s

φjs(
¯̂
Cjs + njs)

where φjs =
Rjs∑
s′ Rjs′

. Then, we have

ǎ∗j0sd = ¯̌a∗j0sd + ε · γ2j

where ε ≡ εa +
εc
ρ−1 . Thus, equation (A.7) becomes

nj0s = γ1
j0s(

¯̌a∗j0s + εγ2j0)−
¯̂
Cj0s + εcγ2j0 +

∑
s′ ̸=s

τ2s
′

j0s(
¯̌a∗j0s′ + εγ2j0)

= γ1
j0s

¯̌a∗j0s −
¯̂
Cj0s +

∑
s′ ̸=s

τ2s
′

j0s
¯̌a∗j0s′ +

εγ1
j0s

+ εc + ε
∑

s′ ̸=s τ
2s′

j0s

1 + εc´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡εj0s

∑
s′

φj0s′(
¯̂
Cj0s′ + nj0s′)

= γ1
j0s

¯̌a∗j0s − (1− εj0sφj0s)
¯̂
Cj0s +

∑
s′ ̸=s

τ2s
′

j0s
¯̌a∗j0s′ + εj0s

∑
s′ ̸=s

φj0s′
¯̂
Cj0s′ + εj0s

∑
s′

φj0s′nj0s′

≡ xj0s + εj0s
∑
s′

φj0s′nj0s′ . (A.22)

Aggregating this equation across sectors, we have∑
s

φj0snj0s =
∑
s

φj0sxj0s + (
∑
s

φj0sεj0s)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡εj0

(
∑
s

φj0snj0s)

= 1
1−εj0

∑
s

φj0sxj0s. (A.23)

85



Combining equations (A.22) and (A.23), we have

nj0s = xj0s +
εj0s

1−εj0²̃
εj0s

∑
s′

φj0s′xj0s′

= (1 + ε̃j0sφj0s)xj0s + ε̃j0s
∑
s′ ̸=s

φj0s′xj0s′

=
(
(1 + ε̃j0sφj0s)γ

1
j0s + ε̃j0s

(
φj0s′τ

2s
j0s′ + φj0s′′τ

2s
j0s′′

))
¯̌a∗j0s

+
(
(1 + ε̃j0sφj0s)τ

2s′

j0s + ε̃j0s

(
φj0s′γ

1
j0s′ + φj0s′′τ

2s′

j0s′′

))
¯̌a∗j0s′

+
(
(1 + ε̃j0sφj0s)τ

2s′′

j0s + ε̃j0s

(
φj0s′τ

2s′′

j0s′ + φj0s′′γ
1
j0s′′

))
¯̌a∗j0s′′

+ (−(1 + ε̃j0sφj0s)(1− εj0sφj0s) + ε̃j0sφj0s(φj0s′εj0s′ + φj0s′′εj0s′′))
¯̂
Cj0s

+ ((1 + ε̃j0sφj0s)εj0sφj0s′ + ε̃j0sφj0s′(−(1− εj0s′φj0s′) + φj0s′′εj0s′′))
¯̂
Cj0s′

+ ((1 + ε̃j0sφj0s)εj0sφj0s′′ + ε̃j0sφj0s′′(φj0s′εj0s′ − (1− εj0s′′φj0s′′)))
¯̂
Cj0s′′

≡ γ̃1
j0s

¯̌a∗j0s + γ̌1
j0s

¯̂
Cj0s +

∑
s′ ̸=s

τ̃2s
′

j0s
¯̌a∗j0s′ +

∑
s′ ̸=s

τ̌2s
′

j0s
¯̂
Cj0s′ .

It is immediate from this equation that γ̃1
j0s
and τ̃2s′j0s

are positive, and lim(β,εa,εc)→(0,0,0) τ̃
2s′

j0s
= 0.

Proof of Lemma A.3. Thanks to the fixed effect FEs, we can ignore components of nBartikjs that are invariant across j.
This means that we can ignore components of nsd invariant across d; i.e., can ignore components of njsd that are
invariant across d. Thus, we can write

njsd = κãjsd + FEjs, nsd = κãsd + FEs, nBartikjs = κ
∑
d

θjsd,0ãsd + FEs, and ñBartikjs = κ
∑
d

θjsdãsd + FEs .

Note that we have

njs = γãjs − γĉjs −
(
1 + γ

ρ−1

)
Ĉjs +

∑
s′ ̸=s

τ
(
ãjs′ − 1

ρ−1 Ĉjs′ − ĉjs′
)

= γ
∑
d

θjsdãjsd − γĉjs −
(
1 + γ

ρ−1

)
ε̂js +

∑
s′ ̸=s

(
τ
∑
d

θjs′dãjs′d − τ
ρ−1 ε̂js′ − τ ĉjs′

)
+ FEs

= γ
∑
d

θjsdãsd + γε̃js − γĉjs −
(
1 + γ

ρ−1

)
ε̂js +

∑
s′ ̸=s

(
τ
∑
d

θjs′dãs′d + τ ε̃js′ − τ
ρ−1 ε̂js′ − τ ĉjs′

)
+ FEs

= γ
∑
d

θjsdãsd +
∑
s′ ̸=s

(
τ
∑
d

θjs′dãs′d

)
− γĉjs −

∑
s′ ̸=s

τ ĉjs′ + FEs +εjs

= γ
κ ñ
Bartik
js +

∑
s′ ̸=s

τ
κ ñ
Bartik
js′ − γĉjs −

∑
s′ ̸=s

τ ĉjs′ + FEs +εjs

where εjs = γε̃js −
(
1 + γ

ρ−1

)
ε̂js +

∑
s′ ̸=s

(
τ ε̃js′ − τ

ρ−1 ε̂js′
)
. We also have

njsd = njs + κ(ãjsd − ãjs)

= njs + κ(ãsd + ε̃jsd)− κ
∑
d

θjsd(ãsd + ε̃jsd)
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= γ
κ ñ
Bartik
js +

∑
s′ ̸=s

τ
κ ñ
Bartik
js′ − γĉjs −

∑
s′ ̸=s

τ ĉjs′ + FEs +εjs + κ(ãsd + ε̃jsd)− κ
∑
d

θjsdãsd − κε̃js

= γ−κ
κ ñBartikjs +

∑
s′ ̸=s

τ
κ ñ
Bartik
js′ − γĉjs −

∑
s′ ̸=s

τ ĉjs′ + FEsd +ε̌jsd

where ε̌jsd = εjs + κε̃jsd − κε̃js.
To show the orthogonality, note that, for any s, d, s′′, d′′, we have

θjs′′d′′,0 ⊥j

(
ε̃js ε̂js ε̃jsd

)T |⃗cj .
Because nBartikjs′′ = κ

∑
d′′ θjs′′d′′,0ãs′′d′′ + FEs′′ and ãs′′d′′ is fixed, we in turn have

nBartikjs′′ ⊥j

(
ε̃js ε̂js ε̃jsd

)T |⃗cj
and

nBartikjs′′ ⊥j

(
εjs ε̌jsd

)T |⃗cj .
Proof of Proposition A.4. From (A.12), the exclusion restrictions directly come from the orthogonalities in Corol-
lary A.3. The relevance condition holds because

rank
(
Ej

[(
ñBartik⊥js n⊥

js′ ñBartik⊥js′′
)T(

nBartik⊥js nBartik⊥js′ nBartik⊥js′′
)])

= rank
(
Ej

[(
ñBartik⊥js ñBartik⊥js′ ñBartik⊥js′′

)T(
nBartik⊥js nBartik⊥js′ nBartik⊥js′′

)])
= rank

(
Ej

[(∑
d θ

⊥
jsdǎ

∗
sd

∑
d θ

⊥
js′dǎ

∗
s′d

∑
d θ

⊥
js′′dǎ

∗
s′′d

)T(∑
d′ θ⊥jsd′,0ǎ

∗
sd′

∑
d′ θ⊥js′d′,0ǎ

∗
s′d′

∑
d′ θ⊥js′′d′,0ǎ

∗
s′′d′

)])
= rank

([∑
d

∑
d′

ǎ∗sdǎ
∗
s′d′Ej

[
θ⊥jsd, θ

⊥
js′d′,0

]]
s,s′

)
= 3

where the first equality comes from the fact that the rank of a matrix is invariant to elementary row operations.
Thus, the IV estimator is consistent, i.e., the IV coefficient on njs′ converges in probability to

τ

γ
=

Λs′

s

Θ′
s

· 1

1− Θs

ρ−1

.

We can see that the last formula is strictly positive and vanishes as β → 0.

Proof of Proposition A.5. The proof is the same as that for Proposition A.4.

Proof of Lemmas A.4 and A.5. The first-order condition (A.16) characterizes the demand qij(ω) = qij(pj(ω)).
Differentiating it with respect to pj(ω), we have

∂U i

∂qij
f ′′
j (q

i
j(ω))

dqij(pj(ω))

dpj(ω)
= λi. (A.24)

Firms solve

max
pj(ω)

{
(pj(ω)− cj)

∑
i

qij(pj(ω))

}
.
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The first-order condition is given by

0 =
∑
i

qij(pj(ω)) + (pj(ω)− cj)
∑
i

dqij(pj(ω))

dpj(ω)

(A.16), (A.24)
=

∑
i

qij(pj(ω)) +
pj(ω)− cj

pj(ω)

∑
i

f ′
j(q

i
j(ω))

f ′′
j (q

i
j(ω))

. (A.25)

The zero-profit condition is given by

Ej = πj(ω) = (pj(ω)− cj)
∑
i

qij(pj(ω)). (A.26)

These conditions characterize the decentralized equilibrium.
Now, consider the centralized revenue maximization problem. To compute the first-order conditions, we first

prove a lemma. We define qj =
∑

i

∫ Nj

0
qij(ω) dω.

Lemma A.11. View ΥiJ(j) as a function of cj′ , qi
′

j′(ω
′), Ej′ and Nj′ , we have62

∂ΥJ(j)

∂qij(ω)
=

∂Υ1J(j)

∂qij(ω)
+

∂Υ2J(j)

∂qij(ω)
=

1− εE2j + εE1j
Υ2J(j)

Υ1J(j)

(1− εc1j)(1− εE2j)− εc2jεE1j
cj

∂ΥJ(j)

∂Nj
=

∂Υ1J(j)

∂Nj
+

∂Υ2J(j)

∂Nj
=

(
1− εE2j + εE1j

Υ2J(j)

Υ1J(j)

)
cjqj
Nj

+
(
1− εc1j + εc2j

Υ1J(j)

Υ2J(j)

)
Ej

(1− εc1j)(1− εE2j)− εc2jεE1j

where εcℓj =
∂ ln cj

∂ lnΥℓJ(j)
and εEℓj =

∂ lnEj

∂ lnΥℓJ(j)
.

Proof.

∂Υ1J(j)

∂qij(ω)
= cj +

∑
j′∈J(j)

∂cj′

∂Υ1J(j)

∂Υ1J(j)

∂qij(ω)
qj′ +

∑
j′∈J(j)

∂cj′

∂Υ2J(j)

∂Υ2J(j)

∂qij(ω)
qj′

= cj + εc1j

∑
j′∈J(j) cj′qj′

Υ1J(j)

∂Υ1J(j)

∂qij(ω)
+ εc2j

∑
j′∈J(j) cj′qj′

Υ2J(j)

∂Υ2J(j)

∂qij(ω)

= cj + εc1j
∂Υ1J(j)

∂qij(ω)
+ εc2j

Υ1J(j)

Υ2J(j)

∂Υ2J(j)

∂qij(ω)

∂Υ2J(j)

∂qij(ω)
=

∑
j′∈J(j)

∂Ej′

∂Υ1J(j)

∂Υ1J(j)

∂qij(ω)
Nj′ +

∑
j′∈J(j)

∂Ej′

∂Υ2J(j)

∂Υ2J(j)

∂qij(ω)
Nj′

= εE1j

Υ2J(j)

Υ1J(j)

∂Υ1J(j)

∂qij(ω)
+ εE2j

∂Υ2J(j)

∂qij(ω)

∂Υ1J(j)

∂Nj
=

cjqj
Nj

+
∑

j′∈J(j)

∂cj′

∂Υ1J(j)

∂Υ1J(j)

∂Nj
qj′ +

∑
j′∈J(j)

∂cj′

∂Υ2J(j)

∂Υ2J(j)

∂Nj
qj′

=
cjqj
Nj

+ εc1j
∂Υ1J(j)

∂Nj
+ εc2j

Υ1J(j)

Υ2J(j)

∂Υ2J(j)

∂Nj

∂Υ2J(j)

∂Nj
= Ej +

∑
j′∈J(j)

∂Ej′

∂Υ1J(j)

∂Υ1J(j)

∂Nj
Nj′ +

∑
j′∈J(j)

∂Ej′

∂Υ2J(j)

∂Υ2J(j)

∂Nj
Nj′

62 ∂qij(ω) means a unit increase in qij(ω) for ω ∈ Ω for a unit measure set Ω.
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= Ej + εE1j

Υ2J(j)

Υ1J(j)

∂Υ1J(j)

∂Nj
+ εE2j

∂Υ2J(j)

∂Nj
.

Thus,

∂Υ1J(j)

∂qij(ω)
=

1− εE2j

(1− εc1j)(1− εE2j)− εc2jεE1j
cj

∂Υ2J(j)

∂qij(ω)
=

εE1j

(1− εc1j)(1− εE2j)− εc2jεE1j

Υ2J(j)

Υ1J(j)
cj

and (
1− εc1j −εc2j

Υ1J(j)

Υ2J(j)

−εE1j
Υ2J(j)

Υ1J(j)
1− εE2j

)(∂Υ1J(j)

∂Nj
∂Υ2J(j)

∂Nj

)
=

( cjqj
Nj

Ej

)
.

Thus, we have(∂Υ1J(j)

∂Nj
∂Υ2J(j)

∂Nj

)
=

1

Nj

1

(1− εc1j)(1− εE2j)− εc2jεE1j

(
1− εE2j εc2j

Υ1J(j)

Υ2J(j)

εE1j
Υ2J(j)

Υ1J(j)
1− εc1j

)(
cjqj
EjNj

)

=
1

Nj

1

(1− εc1j)(1− εE2j)− εc2jεE1j

(
(1− εE2j)cjqj + εc2j

Υ1J(j)

Υ2J(j)
EjNj

εE1j
Υ2J(j)

Υ1J(j)
cjqj + (1− εc1j)EjNj

)
.

Using Lemma A.11, we can compute the first-order conditions for the centralized revenue maximization
problem:

(∂qij(ω))
1

λi

∂U i

∂qij

∣∣∣∣
de
(f ′′

j (q
i
j(ω))q

i
j(ω) + f ′

j(q
i
j(ω))) = λ̃cj

1

(1− εc1j)(1− εE2j)− εc2jεE1j

(
1− εE2j + εE1j

Υ2J(j)

Υ1J(j)

)
(∂Nj)

∑
i

1

λi

∂U i

∂qij

∣∣∣∣
de
· f ′

j(q
i
j(ω))q

i
j(ω) =

λ̃

Nj

1

(1− εc1j)(1− εE2j)− εc2jεE1j
·
(
cjqj + EjNj − εE2jcjqj

+ εE1j

Υ2J(j)

Υ1J(j)
cjqj + εc2j

Υ1J(j)

Υ2J(j)
EjNj − εc1jEjNj

)
.

First, consider the specification of Lemma A.4. The first-order conditions are simplified to

(∂qij(ω)) · · · = λ̃cj
1

(1− εc1)(1− εE2)− εc2εE1

(
1− εE2 + εE1

Υ2J(j)

Υ1J(j)

)
(A.27)

(∂Nj) · · · = λ̃

Nj

1

(1− εc1)(1− εE2)− εc2εE1
·
(
cjqj + EjNj − εE2cjqj + εE1

Υ2J(j)

Υ1J(j)
cjqj + εc2

Υ1J(j)

Υ2J(j)
EjNj − εc1EjNj

)
.

(A.28)

Unless ρj is the same across all j, the term
Υ2J(j)

Υ1J(j)
varies across different j, so we should have εE1 = εc2 = 0

and εc1 = εE2. When fj(·) is CES with elasticity of substitution ρj , condition (A.25) implies pj(ω) = ρj

ρj−1cj .
With λ̃ = 1− εc1, we can check that condition (A.27) holds and condition (A.28) coincides with condition (A.26).
When ρj = ρ for all j, we only need εc1+ 1

ρ−1εE1 = (ρ− 1)εc2+ εE2, and conditions (A.27) and (A.28) hold with

λ̃ =
(1− εc1)(1− εE2)− εc2εE1

1− ρ−1
ρ εE2 +

1
ρεE1 +

ρ−1
ρ εc2 − 1

ρεc1
.
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Second, consider the specification of Lemma A.5. Note that we have

ln cj
lnΥℓJ(j)

=
ln cj

lnΥJ(j)

lnΥJ(j)

lnΥℓJ(j)
=

ln cj
lnΥJ(j)

ΥℓJ(j)

ΥJ(j)

lnEj

lnΥℓJ(j)
=

lnEj

lnΥJ(j)

lnΥJ(j)

lnΥℓJ(j)
=

lnEj

lnΥJ(j)

ΥℓJ(j)

ΥJ(j)
.

Thus, the first-order conditions are simplified to

(∂qij(ω)) · · · = λ̃cj
1

1− εJ(j)
(A.29)

(∂Nj) · · · = λ̃
cjqj + EjNj

Nj

1

1− εJ(j)
. (A.30)

where
εJ(j) = εc

Υ1J(j)

ΥJ(j)
+ εE

Υ2J(j)

ΥJ(j)
.

By the same logic as of Lemma A.4, we need εc = εE unless ρj is the same across all j.

Proof of Lemma A.6. Aggregate revenue (i.e., the objective function of CRM) is given by

∑
i

∑
j

∫ Nj

0

1

λi

∂U i

∂qij

∣∣∣∣
de
· f ′

j(q
i
j(ω)) · qij(ω) dω = ρ−1

ρ

∑
i

∑
j

1

λi

∂U i

∂qij

∣∣∣∣
de
qij .

Therefore, the marginal change in the objective function of problem (CRM) is proportional to

d

(∑
i

∑
j

1

λi

∂U i

∂qij

∣∣∣∣
de
qij

)
=
∑
i

∑
j

1

λi

∂U i

∂qij

∣∣∣∣
de
dqij , (A.31)

while that of the social planner problem is

d

(∑
i

wi logU i

)
=
∑
i

wi

U i
dU i =

∑
i

wi

U i

∑
j

∂U i

∂qij
dqij . (A.32)

Note that the budget constraint is homogeneous of degree 1with respect to {qij(ω)}j,ω. Thus, when themapping
{qij(ω)}j,ω 7→ U i is homogeneous of degree s, we can easily show that λi|de = s · Ui|de

wi when evaluating at the
decentralized allocation. Thus, equations (A.31) and (A.32) are proportional when evaluated at the decentralized
allocation. This proves Lemma A.6.

Proof of Lemma A.7. To show that the the minimized cost of producing {xj(σ)}j,σ only depends on {xj}j , consider
the cost-minimization problem of producing {xj(σ)}j∈J,σ for a given partition J :

min
{xj(ω;σ)}j∈J,σ,ω

∑
j∈J

∑
σ

π(σ)
∑
ω

cj(ω; Υ1J) · xj(ω;σ) (A.33)

s.t. F ({xj(ω;σ)}ω) ≥ xj(σ), ∀j ∈ J, σ
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Suppose that {x∗
j (ω;σ)}j∈J,σ,ω solve this problem and the minimized cost is Υ∗

1J . Then, {x∗
j (ω;σ)}j∈J,σ,ω also

solve the following problem:63

min
{xj(ω;σ)}j∈J,σ,ω

∑
j∈J

∑
σ

π(σ)
∑
ω

cj(ω; Υ
∗
1J) · xj(ω;σ) (A.34)

s.t. F ({xj(ω;σ)}ω) ≥ xj(σ), ∀j ∈ J, σ

Let c({cj(ω; Υ∗
1J)}ω) be the minimized cost of

min
{xj(ω;σ)}ω

∑
ω

cj(ω; Υ
∗
1J) · xj(ω;σ)

s.t. F ({xj(ω;σ)}ω) ≥ 1,

then, since F (·) is constant return to scale, the minimized cost of problem (A.34) is
∑

j∈J c({cj(ω; Υ∗
1J)}ω) ·

(
∑

σ π(σ)xj(σ)). Thus, we can write

Υ∗
1J =

∑
j∈J

c({cj(ω; Υ∗
1J)}ω) · xj ,

and this implicit definition of Υ∗
1J implies that it only depends on {xj}j∈J . This means that the minimized cost

of producing {xj(σ)}j,σ only depends on {xj}j .
Thus the original problem (A.18) can be written as

max
{xj(σ)}j,σ

Ũ({xj(σ)}j,σ)

s.t.
∑
σ

π(σ)xj(σ) ≤ xj , ∀j∑
j

c({cj(ω; Υ1J(j))}ω) · xj ≤ I.

This means that we can solve the problem in two steps. First, we solve the problem for given values of {xj}j :

U({xj}j) = max
{xj(σ)}j,σ

Ũ({xj(σ)}j,σ)

s.t.
∑
σ

π(σ)xj(σ) ≤ xj , ∀j.

Second, we choose {xj}j that maximize U subject to the resource constraint:

max
{xj}j

U({xj}j)

63 Suppose to the contrary that {x∗∗
j (ω;σ)}j∈J,σ,ω solve problem (A.34) with the minimized objective function Υ∗∗

1J < Υ∗
1J .

Let Υ∗∗∗
1J be the value of the objective function of (A.33) when xj(ω;σ) = x∗∗

j (ω;σ). Because {x∗
j (ω;σ)}j∈J,σ,ω solve

problem (A.33), we must have Υ∗
1J ≤ Υ∗∗∗

1J . However, we have

Υ∗
1J > Υ∗∗

1J

=
∑
j∈J

∑
σ

π(σ)
∑
ω

cj(ω; Υ
∗
1J) · x∗∗

j (ω;σ)

≥
∑
j∈J

∑
σ

π(σ)
∑
ω

cj(ω; Υ
∗∗∗
1J ) · x∗∗

j (ω;σ)

= Υ∗∗∗
1J ,

which is a contradiction. The weak inequality comes from the fact that cj is decreasing in Υ1J(j).
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s.t.
∑
j

c({cj(ω; Υ1J(j))}ω) · xj ≤ I.

We can easily see that this is equivalent to

max
{xj(ω)}j,ω

U({xj}j) where xj = F ({xj(ω)}ω)

s.t.
∑
j

∑
ω

cj(ω; Υ1J(j)) · xj(ω) ≤ I.

Proof of Proposition A.10. Using Lemma A.4, the first-order conditions of the constrained social planner problem
are given by

(∂qijsd(ω))
µθiLi

Ci

∂Ci

∂qijsd
(qijsd)

1/ρqijsd(ω)
−1/ρ = λ̃c̃jsdLi · (1− E1j)

(∂Njsd)
∑
i

µθiLi

Ci

∂Ci

∂qijsd

ρ

ρ− 1
(qijsd)

1/ρqijsd(ω)
1−1/ρ = λ̃

(∑
i

c̃jsdq
i
jsd(ω)Li + Cjsd

)
· (1− E2j)

where

1− E1j =
1− εE2j +

1
ρ−1εE1j

(1− εc1j)(1− εE2j)− εc2jεE1j

1− E2j =
1− ρ−1

ρ εE2j +
1
ρεE1j +

ρ−1
ρ εc2j − 1

ρεc1j

(1− εc1j)(1− εE2j)− εc2jεE1j
.

Using the first condition, we can simplify the second condition to

ρ

ρ− 1
λ̃
∑
i

c̃jsdq
i
jsd(ω)Li · (1− E1j) = λ̃

(∑
i

c̃jsdq
i
jsd(ω)Li + Cjsd

)
· (1− E2j).

Comparing these conditions with conditions (A.38) and (A.40), we can see that

Sjsd =
ρ(E2j − E1j)

1− E1j + (ρ− 1)(E2j − E1j)
and sjsd(ω) = E1j

implement the optimal allocation.

Proof of Proposition A.11. The first-order conditions of problem (DE’) are given by

(∂qijsd(ω))
µ

Ci

∂Ci

∂qijsd
(qijsd)

1/ρqijsd(ω)
−1/ρ = λipjsd(ω)

(∂C̃i)
1− µ

C̃i

= λiptradable.

Plugging these conditions into the consumer’s budget constraint, we have

Ii + Ti =
µ

λiCi

∑
j,s,d

∂Ci

∂qijsd
(qijsd)

1/ρ

∫ Njsd

0

qijsd(ω)
1−1/ρ dω +

1− µ

λi
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=
µ

λiCi

∑
j,s,d

∂Ci

∂qijsd
qijsd +

1− µ

λi

= 1/λi

where the last equality comes from the fact that Ci(·) is homogeneous of degree one. The first-order condition
with λi = (Ii + Ti)

−1 characterizes the demand

qijsd(ω) =

(
µ(Ii + Ti)

Ci

∂Ci

∂qijsd
(qijsd)

1/ρ

)ρ

pjsd(ω)
−ρ

=

(
µ(Ii + Ti)

Ci

∂Ci

∂qijsd
(qijsd)

1/ρ

)ρ

· (1− sjsd(ω))
−ρ · p̄jsd(ω)−ρ.

This is isoelastic, so firms optimally set p̄jsd(ω) = ρ
ρ−1 c̃jsd. Thus, the free-entry condition is given by

C̄jsd =
∑
i

(p̄jsd(ω)− c̃jsd)q
i
jsd(ω)Li

=
1

ρ− 1

∑
i

c̃jsdq
i
jsd(ω)Li.

The laissez-faire equilibrium allocation {qi,LFjsd (ω)}, {C̃LFi }, {NLFjsd} should satisfy

µIi
Ci,LF

∂Ci

∂qijsd

∣∣∣∣
LF
(qi,LFjsd )1/ρqi,LFjsd (ω)−1/ρ = ρ

ρ−1 c̃jsd (A.35)

(1− µ)Ii = C̃LFi (A.36)

Cjsd = 1
ρ−1

∑
i

c̃jsdq
i,LF
jsd (ω)Li. (A.37)

The decentralized equilibrium allocation {qi,DEjsd (ω)}, {C̃DEi }, {NDEjsd} should satisfy

µ(Ii + Ti)

Ci,DE
∂Ci

∂qijsd

∣∣∣∣
DE

(qi,DEjsd )1/ρqi,DEjsd (ω)−1/ρ = ρ
ρ−1 (1− sjsd(ω))c̃jsd (A.38)

(1− µ)(Ii + Ti) = (1 + ttradable)C̃DEi (A.39)

(1− Sjsd)Cjsd = 1
ρ−1

∑
i

c̃jsdq
i,DE
jsd (ω)Li. (A.40)

Now, consider the unconstrained social planner problem (SP’). Following the proof of Lemma A.4, the
first-order conditions are

(∂qijsd(ω))
µθiLi

Ci

∂Ci

∂qijsd
(qijsd)

1/ρqijsd(ω)
−1/ρ = λ̃c̃jsdLi · 1

1+ε

(∂C̃i)
(1− µ)θiLi

C̃i

= λ̃Li

(∂Njsd)
∑
i

µθiLi

Ci

∂Ci

∂qijsd

ρ

ρ− 1
(qijsd)

1/ρqijsd(ω)
1−1/ρ = λ̃

(∑
i

c̃jsdq
i
jsd(ω)Li + Cjsd

)
· 1
1+ε
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Using the first condition, we can simplify the third condition to

1
ρ−1

∑
i

c̃jsdq
i
jsd(ω)Li = Cjsd.

Plugging these conditions into the resource constraint of the social planner, we get

∑
i

IiLi =
1+ε
λ̃

ρ
ρ−1

∑
i

µθiLi

Ci

∑
jsd

∂Ci

∂qijsd
(qijsd)

1/ρ

∫ Njsd

0

qijsd(ω)
1−1/ρ dω + 1

λ̃

∑
i

(1− µ)θiLi

= 1
λ̃

(
ρ

ρ−1 (1 + ε)µ
∑
i

θiLi + (1− µ)
∑
i

θiLi

)
= 1

λ̃

(
1 + µ

ρ̃(ε)−1

)∑
i

θiLi.

where ρ̃(ε) = ρ(1+ε)
1+ρε is decreasing in ε. Thus, with θi = Ii for all i, we need λ̃ = 1 + µ

ρ̃(ε)−1 . In sum, the socially
optimal allocation {qi,∗jsd(ω)}, {C̃∗

i }, {N∗
jsd} should satisfy

µIi
Ci∗

∂Ci

∂qijsd

∣∣∣∣
SP
(qi∗jsd)

1/ρqi∗jsd(ω)
−1/ρ =

(
1 + µ

ρ̃(ε)−1

)
c̃jsd · 1

1+ε (A.41)

(1− µ)Ii =
(
1 + µ

ρ̃(ε)−1

)
C̃∗

i (A.42)

Cjsd = 1
ρ−1

∑
i

c̃jsdq
i∗
jsd(ω)Li. (A.43)

We first show that qijsd(ω) = qi,LFjsd (ω), Njsd = χ(ε) ·NLFjsd, C̃i =
1

1+ µ
ρ̃(ε)−1

C̃LFi where χ(ε) =
ρ̃(ε)

ρ̃(ε)−(1−µ) solve the
unconstrained social planner problem. We then study how to implement this allocation using taxes and subsidies.
Conditions (A.42) and (A.43) are immediate from the laissez-faire counterparts (A.36) and (A.37). Under this
allocation, we can check that condition (A.41) also holds:

µIi
Ci

∂Ci

∂qijsd

∣∣∣∣
SP
(qijsd)

1/ρqijsd(ω)
−1/ρ =

µIi

χ(ε)
ρ

ρ−1Ci,LF

∂Ci

∂qijsd

∣∣∣∣
LF
χ(ε)

1
ρ−1 (qi,LFjsd )1/ρqi,LFjsd (ω)−1/ρ

(A.35)
= χ(ε)−1 ρ

ρ−1 c̃jsd

=
(
1 + µ

ρ̃(ε)−1

)
c̃jsd · 1

1+ε .

Note that individual stores produce the same amount, but we have different number of stores, and hence different
number for qijsd = χ(ε)

ρ
ρ−1 qi,LFjsd . The first equality uses the fact that the mapping {qijsd}j,s,d 7→ Ci is homogeneous

of degree one. Finally, the resource constraint holds,

∑
i

(∑
j,s,d

∫ Njsd

0

c̃jsdq
i
jsd(ω) dω

)
Li +

∑
j,s,d

NjsdCjsd +
∑
i

C̃iLi

=
∑
i

(∑
j,s,d

∫ χ(ε)NLF
jsd

0

c̃jsdq
i,LF
jsd (ω) dω

)
Li + χ(ε)

∑
j,s,d

NLFjsdCjsd +
1

1 + µ
ρ̃(ε)−1

∑
i

C̃LFi Li

= µχ(ε)ρ−1
ρ

∑
i

IiLi + χ(ε) 1ρµ
∑
i

IiLi +
1

1 + µ
ρ̃(ε)−1

(1− µ)
∑
i

IiLi

=
∑
i

IiLi.
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This allocation can be implemented by the following taxes and transfers:

ttradable = µ
ρ̃(ε)−1 , sjsd(ω) =

1−µ
ρ̃(ε) , Sjsd = 0, and Ti = 0.

Comparing with conditions (A.41)–(A.43), we can easily check that conditions (A.38)–(A.40) hold. Finally, the
consumer’s budget constraint holds with Ti = 0:

∑
j,s,d

∫ Njsd

0

pjsd(ω)q
i
jsd(ω) dω + ptradableC̃i

=
∑
j,s,d

∫ χ(ε)·NLF
jsd

0

pLFjsdq
i,LF
jsd (ω) dω ·

(
1− 1−µ

ρ̃(ε)

)
+
(
1 + µ

ρ̃(ε)−1

) 1

1 + µ
ρ̃(ε)−1

C̃LFi

=
∑
j,s,d

∫ NLF
jsd

0

pLFjsdq
i,LF
jsd (ω) dω + C̃LFi

= Ii.

95


	Introduction
	Motivating Evidence
	Data Description 
	Reduced-form Evidence on Spillovers
	Stylized Facts on Services Travel

	Theoretical Framework
	A Model of Non-Tradable Services
	Equilibrium
	Efficiency Properties of Equilibrium

	Estimation
	Parameter Estimation
	Estimation Results: SMA Inequality 

	Importance of Spillovers from Trip Chaining
	Spillovers and Agglomeration of Services 
	Welfare Implications of the Trip-chaining Mechanism 

	Urban Structure in the Future
	Work from Home
	Delivery Services

	References
	Appendix for Section 2
	Online Travel Survey
	Robustness of Shift-Share Design
	Correlates of the Instruments
	Pre-trends

	Spillovers Within-Sector

	Appendix for Section 3
	Omitted Derivations
	First-Order Approximation
	Justification of IV Specification 
	Efficiency Properties of Trip Chaining and External Economies of Scale
	Preliminary Results: CES Efficiency
	Preliminary Results: Two-Step Maximization
	Application: Efficiency Properties of Trip Chaining
	Application: Efficiency Properties of External Economies of Scale

	A General Equilibrium Model

	Appendix for Section 4
	Model Inversion: Identifying Productivity
	Fit of the Estimated Gravity Equation
	Parameter Estimation: General Equilibrium Model

	Appendix for Sections 5 and 6
	SMA and (Real) Income Inequality
	Transportation Improvement 

	Survey Questions
	Omitted Proofs

